4.1.2 立体图形与平面图形的转化,教学模式:双标前移,主体探究,平面图形与立体图形的转化ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 北京版,平面图形与立体图形的转化ppt课件 ppt教学课件 ppt优秀课件 ppt公开,一,无穷限的广义积分,第四节广义积分,二,无界函数的广义积
二无界函数的广义积分教学课件Tag内容描述:
1、4.1.2 立体图形与平面图形的转化,教学模式:双标前移,主体探究,平面图形与立体图形的转化ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 北京版,平面图形与立体图形的转化ppt课件 ppt教学课件 ppt优秀课件 ppt公开。
2、一,无穷限的广义积分,第四节广义积分,二,无界函数的广义积分,一,无穷区间的广义积分,例1求由曲线y,e,y轴及,轴所围成开口曲边梯形的面积,解这是一个开口曲边梯形,为求其面积,任取b0,在有限区间0,b上,以曲线y,e,为曲边的曲边梯形面。
3、2023年11月6日星期一,1,新课引入,前面讨论的定积分,都是在有限区间上的有界函数,这类积分属于通常意义下的积分,的积分,但在实际问题中,还会遇到积分区间为无限,或被积,函数在积分区间上是无界的情况,这就需将定积分的概念推广,推广后的积。
4、二,无界函数的广义积分,第四节,常义积分,积分限有限,被积函数有界,推广,一,无穷限的广义积分,反常积分,广义积分,广义积分,第五章,一,无穷限的广义积分,引例,曲线,和直线,及,轴所围成的开口曲,边梯形的面积,可记作,其含义可理解为,定义。
5、一,无穷区间的广义积分,二,被积函数有无穷型间断点的广义积分,第五节广义积分和函数,问题的提出,前面遇到的定积分中,那么如何计算下列两种类型的积分,1,积分区间是有限区间,2,被积函数在上是有界的,一,无穷区间的广义积分,定义4,2设函数f。
6、1,6,5广义积分初步,一,无穷限积分二,瑕积分三,函数在本节中我们将推广定积分定义,以便解决一些诸如,开放型平面图形面积,等问题,b,2,0,2,无穷限积分,定义,设函数f,在区间a,上连续,对任意实数b,其中ba,称,为函数f,在区间。
7、第十一章广义积分与含参变量的积分,定积分条件,积分区间有限,被积函数有界,推广定积分,积分区间无限,被积函数无界,1广义积分,1,无穷积分,1,定义a,设函数f,在a,上有定义,且对任意Aa,f,在a,A上可积,若存在,则称无穷积分收敛,并。
8、第一节定积分的概念与性质,一,引入定积分概念的实例二,定积分的概念三,定积分的几何意义四,定积分的性质,引例1曲边梯形的面积曲边梯形设函数f,在区间a,b,ab,上非负且连续,由曲线y,f,直线,a,b及,轴围成的图形称为曲边梯形,其中曲线。
9、2023930,宁波大学教师教育学院,1,第十一章广义积分,主讲人,陈志勇副教授,2023930,宁波大学教师教育学院,2,二,无界函数的广义积分,1,常义积分,积分限有限,被积函数有界,推广,一,无穷限的广义积分,广义积分,广义积分的概念。
10、第四节广义积分,反常积分,一,无穷限的广义积分二,无界函数的广义积分三,小结,定理,微积分基本公式,一,无穷限的广义积分,问,f,在,b上的反常积分如何计算,例1计算广义积分,解,例2计算广义积分,解,证,p0时,是指数衰减函数,证,二,无。
11、二,无界函数的广义积分,第三节广义积分,常义积分,积分限有限,被积函数有界,推广,一,无穷区间上的广义积分,机动目录上页下页返回结束,广义积分,一,无穷区间的广义积分,引例,曲线,和直线,及,轴所围成的开口曲,边梯形的面积,可记作,其含义可。
12、第六节反常,广义,积分,在区间上的广义积分,一,无穷限的反常,广义,积分,定义1设函数f,在上连续,取ba,则称此极限为f,也称广义积分收敛,当极限不存在时,称广义积分发散,定义2设函数f,在上连续,广义积分,上的广义积分,都收敛,则称上述。
13、,第十一章 反常积分 2 反常积分的收敛判别,第十一章 反常积分 2 反常积分的收敛判别,一无穷限的广义积分的审敛法,不通过被积函数的原函数判定广义积分收敛性的判定方法.,由定理1,对于非负函数的无穷限的广义积分有以下比较收敛原理,一无穷限。
14、高等数学简明教程,第一章 函数极限与连续,第一节 函数第二节 极限第三节 极限的运算第四节 函数的连续性,第一节 函数,一函数的概念,确定函数的两个要素:定义域和对应法则.,第一节 函数,一函数的概念,第一节 函数,一函数的概念,函数的定义。
15、高等数学简明教程,第一章函数,极限与连续,第一节函数第二节极限第三节极限的运算第四节函数的连续性,第一节函数,一,函数的概念,确定函数的两个要素,定义域和对应法则,第一节函数,一,函数的概念,第一节函数,一,函数的概念,函数的定义域是使函数。
16、第六章定积分,第一节定积分的概念,第二节微积分基本公式,第三节定积分的换元法,第四节定积分的分部积分法第五节广义积分,第一节定积分的概念,一,定积分问题举例,1曲边梯形的面积,图6,1,所围成的平,面图形称为曲边梯形,如图,6,1,求其面积。
17、高等数学AdvancedMathematics,第六章定积分,一,定积分问题举例,二,定积分的定义,三,定积分的几何意义,四,定积分的性质,第一节定积分的概念与性质,1,曲边梯形的面积,定积分概念也是由大量的实际问题抽象出来的,求由连续曲线。
18、一,无穷限的广义积分二,无界函数的广义积分,第五节广义积分,一,无穷限的广义积分,两极限均存在称收敛,两极限至少有一个不存在称发散,上述各广义积分统称为无穷限的广义积分,简称无穷积分,2,说明,1,设,则,这里A与B是相互独立的,2,当为奇。
19、一次函数的图象和性质,.,梁艳,一次函数图象与性质ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,一次函数图象与性质ppt课件 ppt教学课件 ppt优秀课件 ppt公开课课件 人教版,1. 一次函数的图象是什么,2.。