第四章-固体溶液活度理论.docx
《第四章-固体溶液活度理论.docx》由会员分享,可在线阅读,更多相关《第四章-固体溶液活度理论.docx(33页珍藏版)》请在三一办公上搜索。
1、第四章固体溶液活度理论(Powe1.1.1987;江培谟,1989;Mukhopadhyaycta1.1993;Powc1.1.andHo1.1.and.1993;Spear.1995:Wi1.1.1998)最紧邻规那么、长程有序与短程有序、B0溶体的理想活度、活度系数、正规溶液、MargUIeS介数、掣次近似模型、筒单混合物模型、似化学模型、亚正规溶液、活度系数表达式、交互固溶体、Darken二阶表达式4.1概述固体溶液是地球化学和岩石学研究中非常重要的一个方面,固溶体模型也多种多样。从固溶体发生混合的晶格绪点来说,既有元素在结点内的混合,也有元素在结点之间的思合;从固溶体中组分的混合性质来
2、说,既有理理混合,也有非理想混合;从固溶体组分的活度模型来说,既有理想活度模型,也有非理想活度模型;从溶液模型来说,既有正规溶液模型,也有亚正规溶液模型:此外,还有描述包括相变情况的活度模型。可以说,固溶体活度理论既简单,也复杂,并且是个尚未得到完满解决的问题。固体溶液(例如矿物)的成分是时它进行热力学分析的根底。由其成分.可得到矿物的某些热力学性质。但是,要使成分与矿物的热力学性质联系起来,还必须选取适当的模型。例加,化学势与成分的关系,理想溶液模型的化学势物成分关系,就与非理想溶液的矿物化学势-成分关系就不同.因此,只有使用适宜的模型,才能得到满意的绪果。1.1.1 最紧邻规那么为处理液态
3、溶液,物理化学家创立了似晶格模型的溶液理论。这个模型是把液体看作分子都排列在一定的格子里,就象晶体那样。但是,液体毕竟不是晶体。因此,此模型就叫做“似晶格模型正因为此模型象晶体那样处理液体,OAatomsBatoms所以目前祓广泛用来研究固体溶液O这个模型不考虑溶液中的库仑力,故只适用于非极性分子的混合物,不适用千高度极性分子的混合物.在处理过程中,只考虑一个分子与它最鹏邻的Z(配位数)个分子(离子)的相互作用。我们知道,矿物固溶体中离子的相互替代会造成固溶体能量的变化,所以选取适宜的固溶体模型描述这种能量变化是必要的。描述固体溶液中这种能量变化的般简单的模型就是所谓的“最紧邻横型”(Near
4、estnearmode1.)。这个模型最早由Ising(1925)所提出,因而也叫做ISing模型。ISing(1925)在描述矿物晶体内铁效性与反铁磁性时,只考虑了最紧邻分布的原子之间的相互作用(Wi1.1.1998)。以完全有序的NaC1.晶体为例。图中距离中心离子(Cemra1.am)A为之的是6个离子B,因而离子A是六次配位的(SiX-fo1.dcoordinated)A占据了八面体位置(OCtahedra1.Site)O距M为耳,J,的是次紧邻(SeCond/nextnearestneighbours)12个离子A,距商A为、G的是8个第三级最紧邻(Ihirdnearestneigh
5、bours)的离子B。在固体溶液模型中.仅考虑离子A和离它最紧邻的6个褥子B之间的相互作用,距离A更远(即次紧邻、第三级最紧邻)的离子不再考虑。1.1.2 长程有序与短程有序所谓“长程有序(IongTangeorder),指在整个矿物晶体内,离子的分布呈现有序的分布.虽然不等效的结点上离子的分布不同,但是相同的结点上各竹诲子的分布却是有规律的。矿物的这种有规律可循的晶体化学特征,是固体溶液热力学性质的分析根底。短程有序(short-rangeorder)那么指在特殊的“成对替代(coup1.edsubstitution)情况下,矿物晶体内某些结点上离子分布的有序特点。短程有序在成对替代中很重要
6、,也是固体溶液显示非理想混合性质的重要原因.短程有序往往是由于相互替代的离子大小、电荷不同引起的。一般来说,晶体结点内离子的替代是无序的,例如,Fc2Mg离子电荷相同.大小相近,它们之间的替代是无限的、无序的。但是,在某些矿物内,情况就不是这样了。例如斜长石固体溶液,K和Na可以无限制地相互替代,但是K、Na和Ca离子之间的替代就不是无泯的。Na+1或K1.替代Ca那么造成一个单位的正电荷缺乏,因此需要Sig同叶再取代一个A1.t以平衡电荷。这样,实际发生的替代是NaSi=CaA1.或KSi=CaA1.,这种成对替代叫做TschcrmaVsSUbStiIUtioIr(契尔马克替代)。契尔马克替
7、代引起斜长石内的短程有序现象。短程有序使得中心离子外围的最紧邻离子的选择性分布,即有些离子“偏好”这个位置(结点),而另一些离子那么偏好其他位置。因而,随告PT变化,短程有序使得矿物固体溶液的有序程度发生变化,同时其迎合的理想程度亦发生变化。例如,可使得矿物内易于形成Af离子对和B-B离子对,而较难以形成A-B离子对。1.1.3 分子型与声子型固体溶液及交互固溶体BradIey(1962)将固体溶液的混合模型分为“分子型”和“离子型”混合模型。分子模型是最简单的混合模型。假设矿物固溶体的混合发生于不同的完整分子之间,因而叫做“分子型混,合(IN)Iecu1.armixingmde1.),也都是
8、所谓的“离子型固溶体”混合模型。离子型固溶体模型客观地缰述了矿物固体溶液的混合情况,也是最常用的或者是隐含使用的混合模型。1.1.4 关于矿物固体溶液的活度许多造岩矿物(rock-fonningminera1.)属于固体溶液,其混合性质明显偏离理想混合,而显示非理想迎合性质,所以其活度并不能用理想混合来刻画。从宏观上来说,应该采用活度系数来校正其非理想性度。对于溶液中的某组分i来说,其活度往往采用表达式a,=X,i其中,Xi称为理想混合活度(idea1.mixingactivity),又称为组.分的热力学摩尔分数(IhCnnodynamiCmo1.ef11ction,Powc1.1.,1978
9、).当量摩尔分数(CqUiVaIentmo1.efraction,GangU1.yandSaXCna.1987)、构型活度(COnfigUrationaIaCtiVity.Ghiorso.1984:PriCC.1985)。是活度系数。这杓关系被习惯称为溶液的组分一活度关系”(actiVity-Composiiionre1.ationship)或aX”关系(aXre1.ationship),一般说来,活度系数是温度.压力和溶液组成的函数。固体溶液中原子的构型(ConfigUraIion)明显影响溶液中组.分的理想活度(idea1.activity)和真实活度(rea1.activity).实际上
10、,溶液的理想混合靖,就准瑜地刻画了矿物固体溶液中的长程有序现象,但短程有序那么不容易刻画。这是因为,短程有序难以测量,并且没有可资利用的标准方法来描述出现期程有序的真实矿物的混合性质。由于离子局部的选择性分布,离子混合的排列数无法计算.同时,由于没有可信的物理模型来描述近程有序现象,所以出现短程有序的矿物,其建合炳及活度表达式都无法准确写出。矿物固体溶液的活度系数,就可用来描述短程有序现象。或者说,活度系数把溶液偏离理想无序泥合性质的所有非理想因素(包括短程有序),都一古脑地包括进去了。需要强调的是,表达式a,=X,是个目前巳经广泛接受的习惯作法,但却是多少人为的写法。4.2 活度的标准状态溶
11、液中某组分i的化学势定义为j=H+RTna,.或者说组分i的活度定义为a,=e*(出梨)。从活度的定义式知道,活度的计算帑要标准状态,或者说离开标准状态活度就失去了意义。在地球化学和岩石学研究中,针对不同研究对象,果用有多种标准状态。下面分别讨论不同对象的活度的标准状态。4.2.1 固溶体活度的标准状态固溶体中某组分i的活度的标准状态,通常定义为所研究的温度和压力下(atthetemperatureandpressureofinterest)的纯物质i在这样的标准状态下,其化学势为t(P.T.X)=r(P.T)+RTIna1o其标准态化学势与物质成分组成无关,而成为严格的该纯物质的摩尔Gibb
12、S自由能,即j=O标准状态下固溶体组分的活度为1。例如,自然产出的石榴石固溶体,其中的铁铝榴石殂分的化学势与标准状杰下纯侏铝榴石的化学势不同,其差值,就由其活度来描述。4.2.2 流体活度的标准状态超临界流体(SUperCritiCaIf1.Uid),例如H9、COH2OCO?等流体,其标准状态一般定义为:P=Ibar,纯物质、所研究的任意温度To这样,某溶液中组分i的化学势为i(P,T,X)=11.bar,T)+RTInai之所以如此定义,是因为在1bar和较高的的温度下,流体接近理想气体,所以该标准状态相当于理想气体。这样的标准状杰下,活度将两项因素联系了起来:一项为哪一项实际流体成分对纯
13、流体成分的校正,另一项为邺一项对气体非理想性质的校正。流体中某组分的活度为a,=f,f1.0,化学势为,(P.T,X)=j,(1.bar.T)+RT1.n(f1.f,)=5,(1.har.T)RT1.nfio其中,r为1bar.T,纯流体组分的标准状态下的逸度,通常接近1.0。这样定义流体组分标准状态后,体积对自由能的奉献局部,就只需从标准状态到压力P积分,即J:VdP=Rnna,=RTInf1.例如.任意温度和压力下H2OCOz流体中比O组分的化学势,可表达为/h,o(P.T.X)=1bar.T)+Knnfh2o4.2.3 水溶液中溶剂活度的标准状态在低温水溶液地球化学系统中,溶剂一般是Hz
14、O,其标准状态定义为:所研究的任意温度T、压力P、H2Oo较通用的标准状态是T、1bar、纯H2O.因为大多数水溶液是稀溶液,溶剂接近于纯物质,所以其活度一般接近1.0。4.2.4 水溶液中溶质活度的标准状态水溶液中溶质的标准状态,一段定义为:所研究的任意温度T、压力P、假想的纯溶质。之所以称这种标准状态为假想的,是因为,当电解质溶液接近纯溶质叶,溶液不再表现为理想溶液.溶质的活度并不接近1.0。不过,当溶液成为无限稀溶液时,溶质的浓度接近活度:1.ir11ai=矶,此即HenIy定律。04.3 固溶体的理想活度从前面的论述中已经知遒,多种殂分的理想混合过程产生的理想混合炳表达为S*,eu,1
15、v=-RXi1.nX如果在矿物晶体内的某一个结点上,发生多种元素的混合(这种情况称为“结点内混合“(inirasi1.cmixing),或同一结点内混合“(same-sitemixing),其理想混合炳同样表达为花Mnuw=RZXJnX,。如果i摩尔单位的这种矿物中共有摩尔个这样的结点,那么其理想混合炳表达为人如,m1.*nf=-RX.1.nX,当然,在某种矿物晶体的多个结点上,都可以发生元素的混合,由此产生的各个结点上的微观状态数目分别为.d、.,那么因元素混合造成的总微观状态数目为=i,3.,BOhZman定律表达为W=K1.nC=b1.ngq,Q.)。如果矿物结构式表达为(A.B)(C,
16、D)JEF)”.,同时不考虑结点之间的相互作用,那么其理想混合场为S,kmi,w=-R(XA1.nXA+QX14InXf1.+冰JnX钙铝榴石(gross11ar.MpAhShOm)分子之间的混合而形成的。因而,这些组分的理想迎合活度分别可表达为:a=XPyra需=X,kna=XiaM=X小如果某单斜辉石(CIinOPyroXene)的成分为(CagNa“6产(FeEFe器尸SiQfI,那么其中钙铁辉石(hedenbergite.CaFe2+SijOft)分的分子型混合的活度为a禽=0.4,钳.辉石(acmite.CaFeuSuOe.)*1分的分子型混合的活度为a,=0.6o这种分子型混合模型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 固体 溶液 理论
链接地址:https://www.31ppt.com/p-7239885.html