模型19 费马点最值模型(原卷版).docx
《模型19 费马点最值模型(原卷版).docx》由会员分享,可在线阅读,更多相关《模型19 费马点最值模型(原卷版).docx(16页珍藏版)》请在三一办公上搜索。
1、费马点问题思考:如何找点P使它到AABC三个顶点的距圈之和PA+PB+PC以小?BP+AP+CP=BP+PQ+QEBE,当b、p、q、E四点共找时取仔致小他费马点的定义,数学上称,到三角形3个顶点矩凄之和最小的点为费马点.它是这样确定的:1 .如果三角形有一个内角大于或等于120。,这个内角的顶点就是费q点:2 .如果3个内角均小于I2O,则在三角形内部对3边张角均为120的点,胫二角形的费马点。费马点的性项:1 .费马点到三角形三个顶点距.离之和最小.2 .费马点连接三顶点所成的三夹角皆为120“.费马点量小值快速求解:彼尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方
2、法发运用存El秘诀:以AABC任*一边为边向外作等边三启射.这条边周HUHIH高用方最小值例现精讲【例1】.已知.在AABC中,NAe8=301)如图1.当A8=AC=2,求8C的值:2)如图2,当A8=AC.点?是4A8C内一点,flW=2,PW=21.PC=3,求/APC的度数:3如图3.当AC=4.A=7C4.点P是ZiA8C内一动点.则+P8+。的最小值为A变式训练【变式17如图,P是边长为I的等边A8C内的任懑一点,求,=%+P8+PC的取信范用.【变式1-2.已知点。足内一点,且它到三角形的三个原点即离之和最小,则P点叫ZXA8C的费I点,(Fermatwint).已经证明:在三个
3、内角均小于120的4A8C中.当NA-8=NAPC=NBPC=120时,P就是AABC的费马点.若点P是校长为&的等段宜角三角形DEF的优当前,则PlHPE+PF=.【变式1-3.如图.0为正方形A8CO对角纹8Q上一动点,若A8=2,则+8CP的最小值为一【例21如图.0是边长为2的正方形八内-动点,。为边8(?I;一动点.连接RA)Q,则附+叨+PQ的E小值为A变式训嫁【变式2-1.如图.已知矩形A8CO.AB=4,8C=6.点M为矩形内一点.点E为SC边上任意一点,则C.2+213D.10【变式2-2.如图,己知正方形A8C。内一动点E到A、8、C三点的距淡之和的最小值为1的,则这个正方
4、形的边长为变式2-3.两张宽为3m,的纸条交叉虫在成四边形A8C。,如图所示,若=3(,则时角践8上的动点。到A,R.C三点正离之和的最小值是一实战演练1 .如图,正方形A8C。内一点,到八、8、C三点的距离之和的最小值为&正方形的边长为.2 .如图,在边长为6的JE方形八SCQ中,点W,N分别为人从8C上的动点,且始终保持BM=CM连接MN,以MN为斜边在矩形内作等,腰RAMNQ,若在正方形内还存在一点P,则点尸到点A、点。、点Q的距窗之和的殿小值为.3 .如图,四个村庄坐落在矩形48CD的四个顶点上.A8=IO公里,8C=15公里,现在要设立两个车站F,则EA+EB+EF+FC+FD的最小
5、值为公%.B4 .如图.。为等边三角形A8C内一点,N8PC等于150,.PC=S.PB=I2,求用的长.5 .将AA8C放在怔个小正方形的边长为1的网格中,点8、C落在格点上,点八在BC的垂直平分践上,ZAfiC=30,点。为平面内一点.ZACB=%(2如图,将AAPC绕点C顺时针旋转60。,画出旋转后的图形(尺规作图,保留痕迹):AP+8P+CP的豉小旗为.笫用围6 .如图1.,是锐角ZA8C所在平面上点.如果NAP8=NWY-=NCMl=120。.则点/就叫做八8C费马点.1当AtBC是边长为4的等边三角形时,费马点P到8C边的距周为.(2若点P是八BC的费马点,NA8C=60,t=2.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模型19 费马点最值模型原卷版 模型 19 费马点最值 原卷版
链接地址:https://www.31ppt.com/p-7187374.html