探索知识体系的逻辑与架构.docx
《探索知识体系的逻辑与架构.docx》由会员分享,可在线阅读,更多相关《探索知识体系的逻辑与架构.docx(24页珍藏版)》请在三一办公上搜索。
1、一、突破惯性思维模式为迎接新的科技革命,实现新的科研模式,应对全球挑战,我们迫切需要突破惯性思维。在新的科技时代,机遇多于挑战。然而,在这个新时代,政府和科技界需要意识到,最为重要的问题也许不是经常讨论的投资与回馈。现代科学技术在20世纪取得了突飞猛进的进步。人类对自然界的认识和改造自然的能力不断提升,科学在向两个极端时空尺度扩展的同时,催生了许多新技术,特别是能源、材料、信息和生物技术的发展,从根本上改变了人类的生产和生活方式,推动了人类文明的进步。然而,人们逐步认识到,在人类可持续发展面临新的挑战、需要解决方案的同时,自然、工程、人类自身和社会科学中仍然存在很多用己有知识无法解决的问题,注
2、重细节的还原论和关注整体行为的系统论仍然无法融合,不同层次之间和同一层次不同尺度之间的关联仍然难以实现。这严重制约了人类可持续发展的能力,对自然科学和社会科学提出了挑战。与此同时,信息技术的进步和知识体系的爆炸性扩张,正在推动新的科研模式的形成,学科交叉、融合也越来越成为取得新突破的主要途径,科学的开放性和全球性已成为当代科学的潮流。在这样一个机遇大于挑战的时代,世界各国都纷纷出台各种重大研究计划,重构国家创新体系,努力增加科技投入。大家普遍期盼着一场新的科技革命的发生。为此,很自然地,各国科技界都呼吁政府增加科技投入,而各国政府也比以往任何时候都更期待科技界能够对科技投入予以更多回馈。因此,
3、相关政产学研的关系越来越引起社会各界的关注,其复杂性似乎甚至超过了科学本身。增加科技投入、促进政产学研结合,当然十分重要,但是,在这些议题之外,还有什么问题更为重要而尚未引起重视呢?笔者认为,确实存在着忽视科学技术本身发展规律的问题,而这些问题或许更为关键,解决这些问题或许对应对全球挑战、加速科学技术进步和建立新的科研模式更为重要。比如:(1)知识体系及其缺失的环节:是否可在现有知识积累的基础上,理清科学知识之间的逻辑关系和结构体系,从而明确缺失的知识环节,优化和完善现代科学技术的布局?(2)推动科研新模式的行动:面对大数据、开放获取和科学全球化的发展趋势,如何理性地引导和推动新的科研范式的形
4、成和发展,而不是被动地等待?相应地,知识体系结构的认识和科研范式的变化也会对各国创新体系的结构和管理提出一系列新的要求,本文试图摆脱惯性思维,探索这些问题。二、理清知识体系的结构和逻辑我们应当系统地理清现代知识体系的结构与逻辑,并使科学知识和应用技术的结构与逻辑及其相互之间的关系成为研发、教育布局的基础。通过理清知识体系的结构和逻辑,我们可以将所有学科和科研领域组织成一个逻辑架构,促进学科交叉融合,可极大地提升科研效率,加快科学技术进步的进程。自然科学与技术各学科和领域的研究对象包括自然界、物质加工科学、生命科学、社会科学,等等。这些对象之间存在严密的逻辑关系,所产生的知识和技术,理应存在严密
5、的结构和逻辑,此结构和逻辑理所应当的是由所研究的对象之间的结构和逻辑决定的。然而,现有学科和领域的布局并不是基于这一固有的结构和逻辑,而是在人们认识十分局限的情况下,受一些偶然或人为的因素影响,根据所研究的具体问题进行归类而逐步积累演化而来,客观上缺乏对整个知识体系的系统考虑。比如:基础学科包括数、理、化、天、地、生,并又进一步细化形成各种分支学科;应用领域包括能源、材料、环境、信息等,以及进一步专业化形成的分支领域;进而又有不同学科和领域形成的交叉学科等。据统计,可定义的学科领域就有8530个。这些学科和领域之间缺少系统的逻辑,难以准确反映各门知识之间的内在关系。更应引起重视的是,学科、领域
6、及其分支的形成,尽管当时有其积极的意义,但逐步也会在无形中形成与其他学科领域的隔离,不利于学科无缝交叉和融合。由此,我们有理由提出以下问题:各种各样的学科之间的逻辑关系是什么?己积累的各方面知识之间是否有一定的规律?打破原有学科和领域的分类,按现有知识之间的逻辑关系勾画科学技术的完整布局是否可能?现有知识体系中是否存在缺失的环节?如果缺失,可能在哪些方面?这些方面是否构成现代科学技术发展的瓶颈问题?这些是当前应当思考的十分重要的问题,可能比争论投资与回馈更为重要。根据已有科学技术的积累,明确各学科和领域之间的逻辑关系,不仅有利于科学研究机构的发展和组织,有利于教育体系的构建,也可促进学科交叉,
7、实现相关学科的无缝融合,以最大限度地减少重复、促进合作,同时将极大地促进教育体系的重构和交叉学科人才的培养。从这个意义说,知识体系结构和逻辑应当满足的条件是:(1)相似性:科学知识体系的结构与逻辑要与研究对象的结构和逻辑一致,形成完整的体系结构;(2)普遍性:最大限度地归纳共性、减少重复,有利于交叉和融合;(3)适应性:将研究对象和知识体系的层次结构和社会经济重大需求有机统一,以便在知识体系的充分支持下更为科学地应对全球挑战。三、知识体系的多层次、多尺度属性和介尺度复杂性我们需要重视知识体系的多层次、多尺度属性和介尺度复杂性。物质世界和人类自身的结构及其中的逻辑关系表现为多层次结构,每一层次又
8、表现为多尺度的结构,建立每一层次多尺度之间的关系和不同层次之间的关联是现代科学的中心任务,其中每一层次的介尺度结构是实现这一中心任务的关键。因此,多层次、多尺度和介尺度将是一个完整合理的知识体系的显著特征。如图1列出的科学技术的研究对象有:自然界、人们在改造自然的过程中形成的物质加工科学、认识人类自身过程中形成的生命科学,以及认识人际行为的社会科学。IEIVF11IIIwi,n.W6,IUI,W1为#11M1一叁国口人自旃|6I研盛象I质加工A学团、,生处学、社会科学产曼yy,口)V亭a2.二IB1.ZJKtBMliwrSMiMi.MM图1科学技术研究对象的多层次、多尺度特征及介尺度复杂性英文
9、单词前缀“meso源自古希腊的单词m6sos,意思是中间或“之间。研究问题或过程的时候,我们通常将大量单元的群体当作“系统。系统还受到其与环境之间的边界的影响。这里的介尺度不是指绝对的物理尺寸,而是个相对的概念,指的是任何介于单元尺度与系统尺度之间的尺度范围。这种介尺度可以存在于不同的层次,因而具体尺寸可以十分多样。物理学通常谈及的介观尺度仅仅是介尺度的一例,它是以原子、分子尺度为单元尺度,以块体材料尺度为系统尺度时的介尺度。传统的方法关注每一层次的单元尺度和系统尺度,而认识这种多尺度问题的关键在于介尺度结构,即介于单元和系统之间的尺度上表现出的动态非均匀结构,或来源于这类动态结构的静态结构,
10、是各领域共同的挑战性问题。需要指出的是,介尺度过程不仅与所处的领域有关,还与同一领域所处的层次有关,如图1所示。这是介尺度问题固有复杂性的根源。(一)自然界自然界的最小单元是基本粒子。在此之上,依次有强子、原子核、原子,不同的原子又进一步构成分子及宏观材料或矿物,而不同矿物构成岩石,又由岩石形成地质单元结构,再进一步由地质单元构成地球和各种星体,以此类推,构成整个宇宙。因此,从基本粒子到宇宙之间存在多层次、多尺度的结构。由于知识的局限,不同层次就构成了不同的学科,而不同学科之间的融合和集成却十分困难。这一方面是知识体系本身属性的自然反映,而另一方面,这种多层次的属性又导致了层次之间的隔阂。在一
11、个学科中作为系统来研究的对象,在其相邻学科中则是“单元,反之亦然。因此,对同一研究对象,所用术语和方法不同,学科可能差别很大,造成了学科之间的隔阂。这是科技领域中长期存在的问题。虽然大家可能都意识到了,但关注不够。(二)物质加工科学同样,改造自然的物质加工科学也表现为多层次和多尺度的特征。对此,由于研究工作不断深入,对其多层次、多尺度特征的认识也更为明确。物质转化过程涉及三个层次:材料、反应器和生态环境,分别对应物质加工研发的不同阶段,即工艺创新、过程设备研发和系统集成。具体到每个层次,其内部往往可分为单元尺度、介尺度和系统尺度。尽管三个层次研究的内容和对象截然不同,并形成不同的分支学科,但却
12、具有以下共同的属性:三个层次均具有多尺度特征;对三个层次涉及的边界尺度(原子/分子、颗粒、单元设备和生态环境),传统理论研究己较为深入,并逐步形成不同的学科:化学、化学工程和过程系统工程;对于三个层次中介于各自的边界尺度之间的介尺度问题认识十分有限,而这分别对应于工艺创新、过程设备放大和系统集成阶段的瓶颈问题,成为现代物质科学和工程研发的焦点问题,也是取得进一步突破的关键。()生命科学生命体系也呈现典型的多层次、多尺度和介尺度结构。尽管不同层次研究的问题、内容与方法不同,但四个层次均具有多尺度特征:生物大分子层次包括氨基酸和核甘酸、二级结构和蛋白质、核酸等;细胞层次包括蛋白质等生物大分子、许多
13、分子(包括生物大分子和其他分子)形成的超大分子机器或(亚)细胞器和细胞;器官层次则由细胞、组织和功能器官组成;生命体层次则由器官、功能系统(如消化系统、血液系统、神经系统)和完整生命体组成。对四个层次涉及的边界尺度,即基本单元分子、生物大分子、细胞、器官和生命体,传统理论研究己较为深入,并逐步形成不同的学科:分子生物学、细胞生物学、组织学和系统生物学。但对于四个层次中介于各自的边界尺度之间的介尺度问题,认识十分有限,分别对应非编码RNA、生物大分子动态结构、细胞器调控、组织和功能系统中的瓶颈问题,成为现代生物学和医学研发的焦点问题,久攻不破。(四)社会科学社会科学是学科的一大门类,涉及社会及其
14、中的人际关系,也表现出多层次属性,如家庭、城镇、国家等。每个层次上也包含多个尺度,并表现出介尺度复杂性。就是说,每个层次上的群体现象也是对应分支学科的最具挑战性的问题。在此不再详细评述。(五)四类科学的共同属性以上四类(见图1)仅是具有代表性且易于理解的科学技术研究的内容。事实上,还有很多内容,虽然非实物存在,但也表现为多层次、多尺度的特征。比如神经和认知系统,再比如语言逻辑和结构,等等。尽管这些具体对象存在差别,但其共性的特征是明显的,即都包含了多层次的系统,每一层次又都表现为多尺度,即单元尺度、系统尺度及介于单元和系统之间的介尺度,而介尺度问题也是认识多尺度特征的瓶颈。近年来的研究表明,多
15、个层次的介尺度问题已成为实现各层次量化和对各层次进行关联的挑战性问题。所有的介尺度问题尽管呈现多样性和复杂性,但其共同特征是它们可能受共同的原理支配。这些共同的特征包括非均匀性、动态、分相等。现代科学分支一般是以一个层次为研究对象,不同层次之间的集成融合仍十分困难。在一个层次(或一个学科)上,现代科学对其单元和系统尺度关注较多,而对介于单元和系统的介尺度问题关注则很少。故而,人们往往被迫采用平均化方法来处理介尺度非均匀结构。因而也产生了试图关联单元尺度和系统尺度的复杂性科学。然而,复杂性科学对层次性和每一层次的介尺度问题关注不够,没有认识到介尺度上缺失的科学原理,这也就是提出介尺度科学的根本原
16、因。四、实现技术体系与知识体系的融合知识体系与技术体系可以融为一体。广义讲,所有应用技术领域的结构和逻辑所涉及的科学知识范畴都是相同的,区别只是用这些知识解决问题的表现方式不同而己,因而也呈现多层次、多尺度和介尺度的特征,可与知识体系融为一体。具体技术和应用领域的形成无一不是建立在前述各层次知识的基础之上,并在发展中为知识体系的形成提供从具体问题中归纳出的共性规律。科学与技术的界限越来越模糊正是这一属性的结果。依据研究内容,我们可以大致把与社会经济相关的科技领域,如能源、材料、信息、地球与气候、生命与健康、农业、空间等(当然,可以有不同的归纳,但并不影响我们分析知识与技术领域的关系),归于多层
17、次的知识体系。每个领域,在发展过程中都涉及上述多层次、多尺度的知识,只不过应用知识的对象有所差异而已。然而由于认识的局限,长期以来,这些共同的基本规律的研究称为基础研究,而应用知识解决具体问题的研究称为应用研究。现在看来,这样的区分不利于各领域的交叉,也不利于知识体系的融合。可以相信,随着知识体系完整性的提升,这一区别将逐步淡化。结合上述两节讨论的内容,考虑现有知识和自然界的多层次、多尺度属性,就形成了知识体系和应用领域之间的关系,也就是科学技术的布局,如图2所示。其中,纬(同心圆)为知识,涉及基本粒子、分子原子、材料、工程、地学、空间、天文、宇宙等层次(这里的“工程层次比其他层次更为广泛,涉
18、及各个领域);经(放射线)为技术,各领域横贯各个层次的知识;中心区域是工具、理论、方法及通用知识(如数学、力学、系统科学等)。如此,按图2的结构和逻辑组织、部署科研,可望事半功倍。当然图2只是一个粗略的构架,还需进一步完善。事实上,不同人会有不同的组织方案,但图2的构架和逻辑不会有太大改变。图2科学技术布局的概念模型五、填补现有知识体系缺少的环节我们需要填补现有知识体系缺少的环节。各层次的介尺度问题是知识和技术体系共同缺失的环节,而不同层次的介尺度问题又可能具有共同的规律,受统一的原理支配,弥补这一原理将引发科学和技术整体的变革性进步。在前面叙述的多层次知识和技术体系中,每个层次里,大家关注较
19、多的是该层次的单元和系统(边界尺度),研究众多单元如何构成系统并试图将单元行为与系统行为相关联。这种分层次的认识,就逐步导致各种分支学科的形成。然而人们逐步地认识到,各层次单元的行为相对较为简单,可运用己有知识进行描述;而多个单元之间相互作用,在很大程度上,决定了本层次系统(也是上一层次单元)的属性十分复杂,用传统的理论和方法无法解决。对介尺度问题的处理往往仅根据实验现象,或仅基于假设:统计力学假设分布函数,流体力学假设本构方程,天文学对无数星星、星系进行粗粒化处理等。对介尺度过程及其原理的忽视成为现代科学知识一个缺失的环节,也是科学技术进一步发展的严重障碍。比如,工程中的很多问题都还依赖于平
20、均化处理,忽略介尺度结构;许多湍流计算、化工过程、气象、气候等工程应用软件采用的也是平均化经验参数处理。有的学科甚至虽然涉及的是介尺度,但还没有认识到介尺度的重要性。许多名义上的多尺度研究实际上主要关注的是单元尺度和系统尺度,对介尺度关注不够,忽略了介尺度上的重要支配原理。近年来,这种状况有所改观,但对介尺度的关注仍旧不足。至于不同层次的知识如何实现无缝融合,就更加困难。此外,更全面地看,处于两个相邻层次之间的边界尺度实际上受到这两个层次中的介尺度的影响,因而,只有充分认识了这两个介尺度,才能完全把握这个边界尺度。就是说,有关边界尺度的传统知识也需要在认识介尺度效应的基础上加以更新。最近几年,



- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 探索 知识 体系 逻辑 架构

链接地址:https://www.31ppt.com/p-7138454.html