人教版选修21第二章椭圆椭圆的几何性质讲义.docx
《人教版选修21第二章椭圆椭圆的几何性质讲义.docx》由会员分享,可在线阅读,更多相关《人教版选修21第二章椭圆椭圆的几何性质讲义.docx(11页珍藏版)》请在三一办公上搜索。
1、案例二精析精练课堂合作探究重点难点突知识点椭圆的几何性质由椭圆方程r+研究椭圆的性质。(利用方程研究,说明结论与由图ab形观察一致)(1)范围22从标准方程得出一1,斗1,即有一%a,Z?y,可知椭圆落在ab-x=4,y=Z?组成的矩形中。(2)对称性把方程中的X换成-X方程不变,图象关于y轴对称。y换成一y方程不变,图象关于X轴对称。把x,y同时换成一Xy方程也不变,图象关于原点对称。如果曲线具有关于X轴对称,关于y轴对称和关于原点对称中的任意两种,那么它一定具有第三种对称。原点叫椭圆的对称中心,简称中心。X轴、y轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。(3)顶点椭
2、圆和对称轴的交点叫做椭圆的顶点。22在椭圆鼻+当=1的方程里,令y=0得x=,因此椭圆和X轴有两个交点ab22A(-。,0)4(,0),它们是椭圆1的顶点。令X=O,得y=匕,因此椭圆和y轴有两个交点Bl(O幼,打(0,。),它们也是椭圆r2v2-7+=l的顶点。因此椭圆共有四个顶点:i(-,0),A2(,0),片(O1.b),5(0/)。加ab两焦点F1(-c,),F2(GO)共有六个特殊点。AA2叫椭圆的长轴,片层叫椭圆的短轴,长分别为2,3,b分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。至此我们从椭圆的方程中直接可以看出它的,对称性、顶点。因而只需少量描点就可以较正
3、确地作图了。(4)离心率长轴相等,短轴不同,扁圆程度不同,这种扁平性质是由椭圆焦距与长轴长之比来决定的。由于e=:ne=qi-:Jtab,所以离心率的范围是Oel。当eO,c(),椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在e=O时的特例;当el,c。,椭圆变扁,直至成为极限位置线段KK,此时也可认为圆为辅圆在e=l时的特例,如右图所不O典型例题分析题型1椭圆中几何性质的考查【例1】椭圆的方程为9+y2=8i的长轴长为,短轴长为,焦点坐标为,顶点坐标为,离心率为O解析先化成标准方程,再确定有关性质。丫22将9/2+),2=81化为标准方程3+=1。39.椭圆长轴在y轴上,其中=9,b=
4、3,c=6j,.长轴长2=18,短轴长=6,焦点坐标为片(0,6五),8(0,6五),顶点坐标为4(一3,0)、A2(3,0),B1(0,-9),B2(0,9)o面、.人c6222a93答案18;6;/?0)的左、右焦点,A是椭圆上位于第一象限内的一点,假设丽而二0,椭圆的离心率等于*,AAO6的面积为2后。为坐标原点),求椭圆的方程。解析求椭圆的方程就是利用待定系数法求4、/?,因此,根据条件列出关于。、Z7的等式构造方程求解即可。C个,答案亚版=O.AF2IF1F2,因为椭圆的离心率e=#,那么Z?2=2,222设A(x,jX%0,y0),由AF1_1.耳居知X=C,A(Gy),代入椭圆方
5、程得J+=1,y=。aba区2.A4。尸2的面积为2亚,Sa=1.CXy=2,即,c匕=2,222a*/=,:.b2=8,a?=2b2=16,a222故椭圆的方程为三十1二二1。168方法指导由椭圆的几何性质,求椭圆的标准方程的一般步骤是:(1)构造方程求。、b的值;(2)确定焦点所在的坐标轴;(3)写出标准方程。22【变式训练2】、尸2是椭圆+与=l(b0)的左、右两个焦点,A是椭ab圆上位于第一象限内的一点,点3也在椭圆上,且满足Q4+O8=()。是坐标原点),AJ.耳居。假设椭圆的离心率等于半,AABFz的面积等于4/5,求椭圆的方程。fX2y21答案一+匚=1168题型2椭圆的离心率X
6、2V2/解析由于条件都【例3】如右图,P是椭圆会+会=1(。人0)上一点,耳、E2为焦点,设0b0),c2=a2-b2,/、Jrv)U耳(一c,0),因为M_1.KA,所以P,妙嗓,丁/21211Z即P。,幺,.48尸,=kx,即一一=,.b=c,:.a2=2c2t.e=-=-oa)aaca2方法二:由方法一知pfc,生,又AP0sAQ4,.”=C2,.g=f,即=c,a)BOOAba2c2C叵a=2c.=-=oCl2【例4】设椭圆的中心是坐标原点,长轴在X轴上,离心率6=立,p(,3到这个椭圆上的点的最远距离2I2)为行,求这个椭圆方程,并求椭圆上到点尸的距离等于近的点的坐标。解析最值问题的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 选修 21 第二 椭圆 几何 性质 讲义
链接地址:https://www.31ppt.com/p-7130586.html