5.5 随机变量函数的分布.docx
《5.5 随机变量函数的分布.docx》由会员分享,可在线阅读,更多相关《5.5 随机变量函数的分布.docx(17页珍藏版)》请在三一办公上搜索。
1、5.5随机变量函数的分布一、背景介绍前面从理论上探讨分析了随机变量的分布规律,然而对很多实际问题,随机变量的分布并不简洁求得;另一方面,有一些实际问题往往并不干脆对分布感爱好,而只感爱好分布的少数几个特征指标,例如分布的中心位置,散布程度等等。弓I例,要比较两个冰箱厂生产的冰箱质量,一方面要比较它们的平均运用寿命,平均寿命越长质量越好:另方面还要比较两个厂产品寿命相对于平均寿命离散程度的大小,离散程度大的质量不稳定,离散程度小的质量比较稳定,比较牢靠。可见,产品的重要质量指标,平均寿命及质量的稳定性均表现为具有肯定特征的参数或数字。知道了这类特征参数或数字,就能对随机变量分布的统计规律一目了然
2、。这类能够直观反映出随机变量分布特征的数字就称为数字特征,包括数学期望和方差。二、随机变量的数学期望及其性质定义1设离散型随机变量的分布列为P(Ar=)=pix=1,2,-,A耿=P,则和式Zl称为X的数学期望。记为若X取值为可列个,无穷级数1-1肯定收敛,则称该无穷级数之和为X的数学期望,记为5(J0=Ai4留意:假如上述无穷级数不肯定收敛,则称该随机变量X的数学期望不存在。fg定义2设连续型随机变量X的密度函数为F(x),若广义积分Jk肯定收敛,则称该积分为连续型随机变量X的数学期望,记为(Ar)=二中(1滋留意:当上述广义积分不肯定收敛时,称X的数学期望不存在。数学期望亦称为期望或均值,
3、山于完全山随机变量的概率分布所确定,所以也称为分布的数学期望。下面给出随机变量函数的期望计算公式:定理设随机变量X的函数Y=f(x),则有()1,若X高散型随机变量(丫)=夙/二1.(x)p(x)dx,若力连续型随机变量例1甲、乙两个工人生产同一种产品,若一天中他们生产的废品数分别为随机变量X与Y,且已知X与的概率分布分别为X0123Y0123Pk0.40.30.20.1Pk0.30.50.20设这两人的日产量相同,问哪位工人的生产技术更要好些?解:仅从概率分布看,不好干脆对哪位工人的生产技术更好一些作业评论,但由数学期望的概念,我们可以通过比较E(X),E(Y)的大小来对工人的生产技术作业评
4、判,依题意可得3欧M=3三00.4+l0.3+2.023.01=lEa)=EyMJUO=00.3+l05+20.2+30,9=09由于E(X)E(Y),故由此判定工人乙的技术更好一些。明显,一天中乙生产的废品数平均比甲1少记。例2某公司生产的机器其无故障工作时间X有密度函数FXN】(x)十。,其他(单位:万小时)公司每售出一台机器可获利1600元,若机器售出后运用1.2万小时之内出故障,则应予以更换,这时每台号损1200元;若在1.2到2万小时之间出故障,则予以修理,由公司负担修理费400元;在运用2万小时以后出故障,则用户自己负责。求该公司售出每台机器的平均获利。解:设Y表示售出一台机器的获
5、利。则Y是X的函数,即-1200f0X2于是E(Y)=Hg(X)=13(-1200)加+/1200/&+1600-dxJ】/Ji?X2b/=100O即该公司售出每台机器平均获利100O元。下面给出随机变量数学期望的性质性质1E(C)=C(C为常数)证明:只需将X看成为是以概率1?取常数C的随机变量即可:因为随机变量X=C,其分布列为尸(X=C=1.由期望的定义,有:S(X)=CA-Co性质2E(CX)=CX(C为常数)证明:以连续型随机变量为例,设X的密度函数为尸(力,由连续型随机变量期望的定义E(X)=xp(x)dx=CJr9(x)dx=CE(X)性质3R(*+b)=E(R+b(b为常数)证
6、明:设连续型随机变量X的密度函数为P(X),则5(Ar+)=Jw(x+A)P(X)dx。XP(x)dx+5/p(x)dx=E(X)+b性质4B(flX+b)=aE(X)+bb为常数)由性质2,性质3,不难推出性质4成立。性质5设有两个随意的随机变量X,它们的期望E(X),月&)存在,则有E(x+y)=&(X)+E(y).性质5可以推广到n个随机变量。推论1设有n个随意的随机变量Xio=1.2,.万),它们的期望E(X)(局),.E(Z)存在,则有睢X总E(M)1-1/Z即n个随机变量40=1.2.-,)和的期望等于各百期望之和。推论2设有n个随意的随机变量40=1.M,它们的期望E(Xl)E(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5.5 随机变量函数的分布 随机变量 函数 分布
链接地址:https://www.31ppt.com/p-7129391.html