第37讲数列的综合应用(讲)(教师版).docx
《第37讲数列的综合应用(讲)(教师版).docx》由会员分享,可在线阅读,更多相关《第37讲数列的综合应用(讲)(教师版).docx(11页珍藏版)》请在三一办公上搜索。
1、第37讲数列的综合应用(讲)思维导图题型1:数列在数学文化与实际问题中的应用数列的综合应用k 题型2:数列中的新定义问题题型3:数列与函数、不等式的综合问题题型归纳题型1数列在数学文化与实际问题中的应用【例11】(2020北辰区二模)我国古代数学著作算法统宗中有这样一个问题:“三百十五里关,初步健步不为难,次日脚痛减半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走315里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地”则该人第一天走的路程为()A.180里B.170里C.160里D.150里【分析】设该人第天走可里路,则q)是公
2、比为;的等比数列,利用等比数列前项和公式求解.【解答】解:设该人第天走。”里路,则,是公比为;的等比数列,由题意得Se = 315,解得4=160.故选:C【例1-2(2020春河池期末)九章算术一书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第二十日所织尺数为()A.18B.19C.20D.21【分析】由题意可知,每日所织数量构成等差数列,且o2+g+/=15,57=28,利用等差数列的通项公式与求和公式即可得出.【解答】解:由题意可知,每H所织数量构成等差数列,且6+%+4=15,S7=28,设公差为d,由%+6+6=15,得3g=15,:
3、.a5=5,由$=28,得7q=28,二.4=4,则d=4一4=1,.20=5+15J=5+151=20.故选:C.【跟踪训练1-1】(2020春河南期末)公元1202年意大利数学家列昂纳多.斐波那契以兔子繁殖为例,引入“兔子数列”:1,L2,3,5,8,13,21,34,55,即q=%=l,an=n-1+n,2(n.3,nV*).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记=253-q4+2)(wN*),数列的前项和为S.,则2侬=()【分析】直接利用关系式的变换求出数列为等比数列.进一步利用等比数列的前项和公式求出结果.解答解:由题Q知:晒=2.%+2:-47凡3=2/+
4、2(q+24.1)一可/=_2,%-arla*2%-a*一由于4=一2,所以么=(一2)”,3H=空二33故选:C.【跟踪训练1-2(2020春永州期末)中国占代数学著作算法统宗中有这样一格问题:”一百二十六里关,初行健步不为难,次日脚痛减半,六朝才得到其关,要见每日行数里,请公仔细算相还”,其意思为:“有一个人要去126里外的地方,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第一天走了()A.64里B.32里C.16里D.8里【分析】由题意利用等比数列的求和公式,求得结果.【解答】解:这个人每天走的路程成等比数列4,公比为q=g,6天共走了126里
5、路.4。-B则有126=-,求得4=64,1-2故选:A.【跟踪训I练1-3(2020春安徽期末)我国古代数学名著九章算术有如下问题:“今有浦生一日,长三尺.莞生一日,长一尺.浦生日自半.莞生日自倍.问几何日而长等?”意思是:“今有浦生长1日,长为3尺.莞生长1日,长为1尺.浦的生长逐日减半.莞的生长逐日增加1倍.问几日浦、莞长度相等?”根据上面的已知条件,若浦、莞长度相等时,问浦的长度是()A.4尺B.5尺C.3尺D.6尺【分析】设浦每日生长的尺数为数列七,则%为等比数列,且4=3,公比g=;.设莞每日生长的尺3(1一/)(-2n)数为数列包,则2为等比数列,且伪=1,公比d=2.当浦、莞长
6、度相等时,有1),12求出2”=6,由此能求出浦、莞长度相等时,浦的长度.【解答】解:设浦每日生长的尺数为数列6,则%为等比数列,且q=3,公比g=g.设莞每日生长的尺数为数列也,则2为等比数列,且4=1,公比d=2.当浦、莞长度相等时,有=i(2),1-11-22解得2”=6或2=1(舍),3。-JJ二.浦、莞长度相等时,浦的长度是2_=6(1-4)=5(尺).1-162故选:B.【名师指导】1 .解决数列与数学文化相交汇问题的关键会脱去数学文化的背景,读懂题意由题意,构造等差数列或等比数列或递推关系式的模型.利用所学知识求解数列的相关信息,如求指定项、通项公式或前F项和的公式2 .解答数列
7、应用题需过好“四关”I审题关|4存如而证材科以五,.dO7S!I域模关H转化成数列问题,并分消数列是等差数列:11!还是等比数列I求解关H-杀面铉死间逅I还原关H蒋所至而结巢隹成到变标间速审题型2数列中的新定义问题【例2-1(2020春宿州期末)对于数列可,定义7;=4+3%+3&为叫的“最优值”,现已知n数列q的“最优值”T户,记数列g的前项和为s“,则藕=()A.2019B.2020C.2021D.2022【分析】由已知可得4+3/+3”-%=小3”,得到几.2时,有q+34+3-2q=(-1)3”1,两式相减可得q=2+1(.,验证=1时,4=3适合上式,川得数列a,J是公基为2的等差数
8、列,求其前2020项的和,则答案可求.【解答】解:34+3a2+3”l,且骞=3,n:.OJ+3a2+.+3Tan=3,当儿.2时,有+3%+3q-=(/7-1).3-,两式相减可得:3T吗=小3-5-l)3T=(2+l)3”T./.an=2n+1(.2).当=1时,01=3适合上式.an=2+l.则数列4是以3为首项,以2为公差的等差数列._(3+2X20201)2020_9m9乂20202I2U22X2U2U可得则2也=2022.2020故选:D.qQwN*,夕为非零常数),则称“”为“差等比【例2-2】(2020春武邑县校级期末)定义:若限一%数列”.已知在“差等比数列”%中,4=1,6
9、=2,%=4,则%2o-刈9的值是()A. 22019B. 220,8C. 22017D. 220,6【分析】“差等比数歹J的性质得氏*=2,由此推导出.2o-%)9=(%-q)2刘,a2-a【解答】解:.在“差等比数列”q中,q=l,a2=2,0,=4,4-2af-Cll2-1.-=(-)2三=2三.故选:B.【跟踪训练2-1】(2020重庆模拟)斐波那契数列,指的是这样一个数列:LL2,3,5,8,13,21,在数学上,斐波那契数列”定义如下:al=a2=ta”=,+(.3,Z).随着的增大,巴I-越来%越逼近黄金分割书丑0.618,故此数列也称黄金分割数列,而以外“、”为长和宽的长方形称
10、为“最美长方形”,己知某“最美长方形”的面积约为336平方分米,则该长方形的长应该是()A.144厘米B.233厘米C.250厘米D.377厘米【分析】设出长,根据长和宽之间的关系代入面积计算即可.【解答】解:设该长方形的长为X厘米,则宽为0.618x;故有:0.618f=336平方分米=33600平方厘米:.x=233厘米:故选:B.【跟踪训练2-2】(2020香坊区校级二模)有限数列A=q,k,,叫,S”为其前项和,定义S+邑+S”为A的“凯森和”,如有504项的数列4,小,的“凯森和”为2020,则有505项的n数列2,%,生,的“凯森和”为()A.2014B.2016C.2018D.2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 37 数列 综合 应用 教师版
链接地址:https://www.31ppt.com/p-7012045.html