CFA+2024++L2数量课后习题及详解.docx
《CFA+2024++L2数量课后习题及详解.docx》由会员分享,可在线阅读,更多相关《CFA+2024++L2数量课后习题及详解.docx(66页珍藏版)》请在三一办公上搜索。
1、PracticeProblemsThefollowinginformationrelatestoquestions1-5Youareajunioranalystatanassetmanagementirm.Ybursupervisorasksyoutoanalyzethereturndriversforoneoftheirm,sportfolios.Sheasksyoutoconstructaregressionmodeloftheportfoliosmonthlyexcessreturns(RET)againstthreefactors:themarketexcessreturn(MRKT)
2、,avaluefactor(HML),andthemonthlypercentagechangeinavolatilityindex(VIX).Youcollectthedataandruntheregression,andtheresultingmodelisYret=-999+1.817XMRKT+0489XHML+0.037Xy.Youthencreatesomediagnosticchartstohelpdeterminethemodelit.sujmJ SSQUXBoHod%ChangeinvolatilityfactorRETvsMRKTSErUSSB3x20HJodMarket
3、excess returnsRET predicted valuess(snp3J A. Determinethetypeofregressionmodelyoushoulduse.B. 1.ogisticregressionC. SimplelinearregressionD. Multiplelinearregression1. Determinewhichoneofthefollowingstatementsaboutthecoeficientofthevolatilityfactor(VIX)istrue.A. A1.0%increaseinXqxwouldresultina-0.96
4、2%decreaseinYret-B. A0.037%increaseinXvVXWOUIdresultina1.0%increaseinYret-C. A1.0%increaseinXytholdingalltheotherindependentvariablesconstant,wouldresultina0.037%increaseinYRE2. IdentifytheregressionassumptionthatmaybeviolatedbasedonChart1,RETvs.VIX.A. IndependenceoferrorsB. Independenceofindependen
5、tvariablesC. 1.inearitybetweendependentvariableandexplanatoryvariables3. Identifywhichchart,amongCharts2,3,and4,ismostlikelytobeusedtoassesshomoskedasticityA. Chart2B. Chart3C. Chart45. Identifywhichchart,amongCharts2,3,and4,ismostlikelytobeusedtoassessindependenceofindependentvariables.A. Chart2B.
6、Chart3C. Chart41. Ciscorrect.Youshoulduseamultiplelinearregressionmodelsincethedependentvariableiscontinuous(notdiscrete)andthereismorethanoneexplanatoryvariable.Ifthedependentvariablewerediscrete,thenthemodelshouldbeestimatedasalogisticregression.2. Ciscorrect.Thecoeficientofthevolatilityfactor(Xy)
7、is0.037.Itshouldbeinterpretedtomeanthatholdingalltheotherindependentvariablesconstant,a1%increase(decrease)wouldresultina0.037%increase(decrease)inthemonthlyportfolioexcessreturn(V)3. Ciscorrect.Chart1isascatterplotofRETversusVIX.Linearitybetweenthedependentvariableandtheindependentvariablesisanassu
8、mptionunderlyingmultiplelinearregression.AsshowninthefollowingRevisedChart1,therelationshipappearstobemorecurved(i.e.,quadratic)thanlinearSUJruB- O=OjHOd%Changeinvolatilityfactor4. Ciscorrect.Tbassesshomoskedasticitwemustevaluatewhetherthevarianceoftheregressionresidualsisconstantforallobservations.
9、Chart4isascatterplotoftheregressionresidualsversusthepredictedvalues,soitisveryusefulforvisuallyassessingtheconsistencyofthevarianceoftheresidualsacrosstheobservations.Anyclustersofhighand/orlowvaluesoftheresidualsmayindicateaviolationofthehomoskedasticityassumption.5. Biscorrect.Chart3isascatterplo
10、tcomparingthevaluesoftwooftheindependentvariables,MRKTandHML.Thischartwouldmostlikelybeusedtoassesstheindependenceoftheseexplanatoryvariables.EvaluatingRegressionModelFitandInterpretingModelResults1.earningOutcomesThecandidateshouldbeableto: evaluatehowwellamultipleregressionmodelexplainsthedependen
11、tvariablebyanalyzingANOVAtableresultsandmeasuresofgoodnessofit formulatehypothesesonthesigniicanceoftwoormorecoeficientsinamultipleregressionmodelandinterprettheresultsofthejointhypothesistests calculateandinterpretapredictedvalueforthedependentvariable,giventheestimatedregressionmodelandassumedvalu
12、esfortheindependentvariablePracticeProblemsThefollowinginformationrelatestoquestions1-5Youareajunioranalystatanassetmanagementirm.Ybursupervisorasksyoutoanalyzethereturndriversforoneoftheirm,sportfolios.Sheasksyoutoconstructaregressionmodeloftheportfoliosmonthlyexcessreturns(RET)againstthreefactors:
13、themarketexcessreturn(MRKT),avaluefactor(HML),andthemonthlypercentagechangeinavolatilityindex(VIX).Youcollectthedataandruntheregression.Aftercompletingtheirstregression(Model1),youreviewtheANOVAresultswithyoursupervisorThen,sheasksyoutocreatetwomoremodelsbyaddingtwomoreexplanatoryvariables:asizefact
14、or(SMB)andamomentumfactor(MOM).Yburthreemodelsareasfollows:Model1:RETj-bq+ffMRKTz+IjhmlHMLj+byV!X/+/.Model2:RET/=bq+bMRcMRKTj+bMLHML+byVlXbMBSMB/+z.Model3:RETj=bo+ffMRKT/+1hmlHML,+byVlX/+bsMBSMB/+OmomMOM/+/.TheregressionstatisticsandANOVAresultsforthethreemodelsareshowninExhibit1,Exhibit2,andExhibit
15、3.Exhibit1:ANOVATableforModel1RET尸bo+bRMRKT;+1)hmlHML/+byVIXj+RegressionStatisticsCoeficientStd.Errort-Stat.P-ValueMultipleR0.907Intercept-0.9990.414-2.4110.018R-SqUared0.823MRKT1.8170.12414.6830.000AdjustedR-Sq.0.817HML0.4890.1184.1330.000StandardError3.438VIX0.0370.0182.1220.037Observations96.000A
16、NOVADfSSMSFSigniicanceFRegression35058.4301686.143142.6280.000Residual921087.61811.822Total956146.048Exhibit2:ANOVATableforModel2RET/=o+MRKTMRKTi+bfMLHML+byjVIXi+bsMBSMBi+iRegressionStatisticsCoeficientStd.Errort-Stat.P-ValueMultipleR0.923Intercept-0.8200.383-2.1390.035R-SqUared0.852MRKT1.6490.12113
17、.6830.000RETi=bq+bMRMRKT/+1)hmlHML+byVIXf+bsMBSMB/+;RegressionStatisticsCoeficientStd.Errort-Stat.P-VaIueAdjustedR-Sq.0.846HML0.4340.1093.9700.000StandardError3.161VIX0.0250.0161.5160.133Observations96.000SMB0.5630.1334.2230.000ANOVADfSSMSFSigniicanceFRegression4Residual91Total955236.6351309.159131.
18、0000.000909.4139.9946146.048Exhibit3:ANOVATableforModel3RETi=bq+bMRMRKT/+b11LHML;+bvVIXf+bsMBSMB/+b0MMOMz+,RegressionStatisticsCoeficientStd.Errort-Stat.P-ValueMultipleR0.923Intercept-0.8230.385-2.1360.035R-SqUared0.852MRKT1.7190.2806.1300.000AdjustedR-Sq.0.844HML0.4120.1382.9890.004StandardError3.1
19、77VIX0.0260.0171.5320.129Observations96.000SMB0.5530.1393.9870.000MOM-0.0670.242-0.2760.783ANOVADfSSMSFSigniicanceFRegression55237.4021047.480103.7510.000Residual90908.64710.096Total956146.048Ybursupervisorasksforyourassessmentofthemodelthatprovidesthebestitaswellasthemodelthatisbestforpredictingval
20、uesofthemonthlyportfolioreturn.So,youcalculateAkaike,sinformationcriterion(AIC)andSchwarz,sBayesianinformationcriterion(BIC)forallthreemodels,asshowninExhibit4.Exhibit4:Goodness-of-FitMeasuresAICBlCModel1241.03251.29Model2225.85238.67Model3227.77243.161. Determinewhichoneofthefollowingreasonsforthec
21、hangeinadjustedR2fromModel2toModel3ismostlikelytobecorrect.A. AdjustedR2decreasessinceaddingMOMdoesnotimprovetheoverallexplanatorypowerofModel3.B. AdjustedR2increasessinceaddingSMBimprovestheoverallexplanatorypowerofModel2.C. AdjustedR2decreasessinceaddingMOMimprovestheoverallexplanatorypowerofModel
22、3.2. Identifythemodelthatprovidesthebestit.A. Model1B. Model2C. Model33. Identifythemodelthatshouldbeusedforpredictionpurposes.A. Model1B. Model2C. Model34. CalculatethepredictedRETforModel3giventheassumedfactorvalues:MRKT=3,HML=-2,VIX=-5,SMB=IfMOM=3.A. 3.732B. 3.992C. 4.5555. CalculatethejointF-sta
23、tisticanddeterminewhetherSMBandMOMtogethercontributetoexplainingRETinModel3ata1%signiicancelevel(useacriticalvalueof4.849).A. 2.216,soSMBandMOMtogetherdonotcontributetoexplainingRETB. 8.863,soSMBandMOMtogetherdocontributetoexplainingRETC. 9.454,soSMBandMOMtogetherdocontributetoexplainingRET1. Aiscor
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CFA 2024 L2 数量 课后 习题 详解

链接地址:https://www.31ppt.com/p-6797837.html