数列专题训练包括通项公式求法和前n项和求法(史上最全的方法和习题).docx
《数列专题训练包括通项公式求法和前n项和求法(史上最全的方法和习题).docx》由会员分享,可在线阅读,更多相关《数列专题训练包括通项公式求法和前n项和求法(史上最全的方法和习题).docx(19页珍藏版)》请在三一办公上搜索。
1、数列专题1、数列的通项公式与前n项的和的关系s.,n=1an=c(数列”的前n项的和为=q+4+%).-Sz,之22、等差数列的通项公式an=ai+(n-)d=dn+ai-d(neN)3、等差数列其前n项和公式为n(a.+an)n(n-Y)jJ2z1、叫=-n-+(al-d)n.4、等比数列的通项公式=W=幺g5N);q5、等比数列前n项的和公式为4(1 T)i-qnavq = 或针小nax,q = 常用数列不等式证明中的裂项形式:Illl)(=n(n+l)nn+n(n+k)11Iz11、(2)访HrhE二一kZ+l(k+l)kk2(k-l)kk-k/八1111(4)=;“5+1)5+2)2(
2、+1)(/7+1)(/?+2)n11(3)ZZZ1(7?+1)!n(+l)!(6)247+T一3=L2JJ)yjn+h1?n+-l2?n(n+)-.数列的通项公式的求法1.定义法:等差数列通项公式;等比数列通项公式。例.等差数列/是递增数列,前n项和为S”,且%,%,%成等比数列,S5=aj.求数列/的通项公式.解:设数列册公差为d(dO),生,。9成等比数列,城=卬。9,即(q+2d) 1 1 1-=n2 +n n(n + V) n + 1分别令w = 1,2,3,(-1),代入上式得(一1)个等式累加之,即(a2 -al) + (a3 -a2) + (a4 -a3) +(an -an_t)
3、=ai(a1+8c)=d2=ad*.*JO,/.ax=d54VS5=a;:.5q+d(ai+4d)233由得:1=|,J=333=+(w1)-=w2 .公式法:已知S”(即q+4+,=/()求可,用作差法:=j(n2)例.已知数列%的前n项和Sn满足Sn=24+1.求数列%的通项公式。解:由。=S=2一Inal=1当九2时,有勺=Sn-=2(fl-4)+2(-1),.an=2a“_+2(-l)wl,a,=2an_2+2(-1),2,a2=2a-2.a=2n,ar,(-1)+2n2(-l)2+-+2(-1),=2rt,+(-1)(-2,+(22+-+(-2)/”,V=-2n-2+(-l,.2经验
4、证=1也满足上式,所以4=2+(一i)Tf(D,(n=l)3 .作商法:己知a。/=75)求见,用作商法:all=/(n)fn9V五二铲)如数列中,=1,对所有的2都有。田2。3。=+则。3+。5=;4 .累加法:若%+,=f5)求:an=(4%)+(%-an-2)+&-%)+4(2)。解:由条件知:例.已知数列”满足=1,an=an+,求2n+n所以 “一。I =11: =一, ,2例:已知数列,n11131.*.all=1=h2n2n且=2,an+=a,+nt求a”.解:%+=/+%_%t=T,lL4-2=-2,all,2-ali,3=n-3t,a2-aA=1将以上各式相加得为一%二l+2
5、+3+1,(1+-1)(1)on(n-)an=a.+=2+122又因为当=1,q=2+小9二D=2成立,2.n(n-)*.an=2+-(wN)5.累乘法;已知也=/()求见,用累乘法:友q52).an4一an_2q例.已知数列“满足4=,an+=-an,求明。3n+1解:由条件知&L=-J,分别令=1,2,3,代入上式得(一1)an+1个等式累乘之,即。3a4an123-la,l1=l=-X-X-XX=-2-=aa、a,a_x234na.n例:已知。=3,4+=34,求通项。”.解:n+l=3%at-3-1-3”-2.”一3an-lan-24把以上各项式子相乘得(-l)w_3.3?.333_1
6、_3+2+3+T_32q(W-I)Ml1Jan=32三又当n=l时,=32=3成立(n-)w11an=326.已知递推关系求明,用构造法(构造等差、等比数列)。(1)形如C/=/+/()只需构造数列轨,消去/()带来的差异.其中/()有多种不同形式/()为常数,即递推公式为ff+=p%+q(其中p,q均为常数,(虱-l)0).解法:转化为:all+i-t=p(an-t)9其中再利用换元法转化为等比数列求解。I-P例.已知数列中,4=1,。“+=2。“+3,求明.解:设递推公式/+=2an+3可以转化为。+-/=23一。BPan+l=2an-t=t=-3.故递推公式为4s+3=2(m+3),令勿
7、=%+3,则仇=4+3=4,且触=Xj=2.所以2是bn%+3以4=4为首项,2为公比的等比数列,则2=4x2=2x,所以4=2用3.f(n)为一次多项式,即递推公式为QN=pa,l+775例.设数列%:=4,%=3%+2-l,52),求明.解:ibn=atl+An+B,则。=b“-A-8,将明,。,一代入递推式,得bn-An-B=3区T-4-1)一回+2一I=3瓦一一(3A-2)n-(38-3A+1)A=3A-2A=9zz3=38-34+118=1.取H=/+1(1)则n=3b,w又4=6,故a=6x3*=2x3代入(1)得%=23w-Zi-I备注:本题也可由4=3+2-1=3,+257)T
8、(3)两式相减得an-an,i=3(/T-an_2)+2转化为bll=PbnTQ求之/5)为的二次式,则可设a=4+A+8”+C;(或(2)递推公式为。向=P%+/(其中p,q均为常数,(Mfq-I)0)%=Pan+“,其中P,q,r均为常数)解法:该类型复杂一些。一般地,要先在原递推公式两边同除以,用,得:=-+-qqqq引入辅助数列历(其中2=),得:。向=2+,再应用类型(1)的方法解决。qqq例.己知数列为中,4=|a+1=+(;)*求知。解:在勺+=+,+(g严两边乘以2向得:2向勺川=|(2。)+1令5=2%,则.=a+l,应用例7解法得:=3-2(一)类型(2)的方法求解。21例
9、.己知数列为中,ai =l,2 =256tm+2 =-an+i+-a,21解:由凡+2 = 3+ 可可转化为%+2 - s6+ = 4+】T2r1 r“WS L =即 4+2 = (s +/)4+1 - SS“nj1!或 Jst = 21一一 卜=S = I这里不妨选用1 (当然也可选用 t31/ = 1见+2 -4川=-5(%+1 一4)= + 一。“是以首项为生一 %+勺=(一;)“,应用类型1的方法,分别令 = L2,3,式累加之,即可一q=(_;)+ (一;),+(-)w2 =-求明。q)313 ,大家可以试一试),则q=l,公比为-!的等比数列,所以 3,5-l),代入上式得5-1)
10、个等-G产l3(3)递推公式为“+2=P=+ga“(其中P,q均为常数)。解法:先把原递推公式转化为。/2一5。用=。+1一相”)其中5,1满足(+=,再应用前面st=-q731又q=l,所以凡7.形如q或可_厂。/二版/,的递推数列都可以用倒数法求通项。风+b例:勺=2%IM=I3%+1解:取倒数:-=3a-l+1=3+-/an-是等差数列,=(-1)3=1+(w-1).3=!QJanax371-28、=pd型该类型是等式两边取对数后转化为前边的类型,然后再用递推法或待定系法构造等比数列求出通项。两边取对数得】g%+i=Ig(Pa)Ig%+1=IgP+rig%设a=Ig%,原等式变为。用=m
11、+lg即变为基本型。2例.己知=2,qzl+=去,求其通项公式。2解:由=2,。“+=知O且。“3,将等式两边取对数得Igan+x=21grt-lg3,即Iga向一Ig3=2(lg勺-Ig3),9,lg-lg3为等比数列,其首项为lgqlg3=lg,公比为22/.lga-lg3=2M,Ig-,2lg,=2rt-1.lg-+lg3o通项公式为=3(彳)2-.数列的前n项求和的求法1 .公式法:等差数列求和公式;等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;常用公式:l+2+3+=4(+1),r+2+=J(+1)(2+1),2 O13+23+33+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 专题 训练 包括 公式 求法 史上最全 方法 习题
链接地址:https://www.31ppt.com/p-6635053.html