第6章串级控制系统.ppt
《第6章串级控制系统.ppt》由会员分享,可在线阅读,更多相关《第6章串级控制系统.ppt(100页珍藏版)》请在三一办公上搜索。
1、1,第6章 串级控制系统,目 录6.1 串级控制系统的基本概念6.2 串级控制系统的分析6.3 串级控制系统的设计6.4 串级控制系统的整定6.5 串级控制系统的投运6.6 利用MATLAB对串级控制系统进行仿真本章小结,2,最简单的控制系统单回路控制系统系统中只用了一个调节器,调节器也只有一个输入信号。从系统方框图看,只有一个闭环。,3,随着生产过程向大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,对能源消耗和环境污染也有明确的限制。为此,需要在简单控制系统的基础上,采取其他措施,组成复杂控制系统。复杂控制系统 多回路控制系统
2、。由多个测量值、多个调节器;或者由多个测量值、一个调节器、一个补偿器或一个解耦器等等组成多个回路的控制系统。从系统方框图看,有多个闭环。,4,6.l 串级控制系统的概念,6.2.l 串级控制的提出例6-1 隔焰式隧道窑温度控制系统。(见图6-1)。隧道窑是对陶瓷制品进行预热、烧成、冷却的装置。,在生产过程的常规控制中,串级控制系统是提高过程控制品质非常有效的方案之一。,5,如果火焰直接在窑道烧成带燃烧,燃烧气体中的有害物质将会影响产品的光泽和颜色,所以就出现了隔焰式隧道窑。火焰在燃烧室中燃烧,热量经过隔焰板辐射加热烧成带。制品在窑道的烧成带内按工艺规定的温度进行烧结,烧结温度一般为1300,偏
3、差不得超过5C。所以烧成带的烧结温度是影响产品质量的重要控制指标之一,因此将窑道烧成带的温度作为被控变量,将燃料的流量作为操纵变量。为了保证陶瓷制品的质量,必须严格控制烧成带温度1,为此采用调节阀来改变燃料的流量,被控对象具有三个热容积,即燃烧室、隔焰板和烧成带。,6,图6-l即为隔焰隧道窑烧成带温度简单控制系统工艺流程图,原理方框图如图6-2所示。,按照我们前面学过的简单控制系统,影响烧成带温度l的各种干扰因素都被包括在控制回路当中,只要干扰造成l偏离设定值,控制器就会根据偏差的情况,通过控制阀改变燃料的流量,从而把变化了的l 重新调回到设定值。,7,但实践证明这种控制方案的控制质量很差,远
4、远达不到生产工艺的要求。原因就是从控制阀到窑道烧成带滞后时间太大,如果燃料的压力发生波动,尽管控制阀门开度没变,但燃料流量将发生变化,必将引起燃烧室温度的波动,再经过隔焰板的传热、辐射,引起烧成带温度的变化。因为只有烧成带温度出现偏差时,才能发现干扰的存在,所以对于燃料压力的干扰不能够及时发现。烧成带温度出现偏差后,控制器根据偏差的性质立即改变控制阀的开度,改变燃料流量,对烧成带温度加以调节。可是这个调节作用同样要经历燃烧室的燃烧、隔焰板的传热以及烧成带温度的变化这个时间滞后很长的通道,当调节过程起作用时,烧成带的温度已偏离设定值很远了。也就是说,即使发现了偏差,也得不到及时调节,造成超调量增
5、大,稳定性下降。如果燃料压力干扰频繁出现,对于单回路控制系统,不论控制器采用PID的什么控制作用,还是参数如何整定,都得不到满意的控制效果。,8,假定燃料的压力波动是主要干扰,发现它到燃烧室的滞后时间较小、通道较短,而且还有一些次要干扰,例如燃料热值的变化、助燃风流量的改变以及排烟机抽力的波动等等(如图6-2中用D2表示),都是首先进入燃烧室。人们会想,如果把燃烧室的温度2测量出来并送控制器T2C,让它来控制调节阀,那么调节动作就提前了许多。于是就出现了图6-3所示的以燃烧室温度2为被控变量的单回路控制系统。,9,制品的原料成分、窑车上装载制品的数量以及春夏秋冬、刮风下雨带来环境温度的变化等等
6、(如图6-2中用D1表示)。由于在这个控制系统中,烧成带温度不是被控变量,所以对于干扰D1造成烧成带温度的变化,控制系统无法进行调节。,这种控制系统对于上述的干扰有很强的抑制作用,不等到它们影响烧成带温度,就被较早发现,及时进行控制,将它们对烧成带温度的影响降低到最小限度。但是,我们也知道,还有直接影响烧成带温度的干扰,例如窑道中装载制品的窑车速度、,10,温度稳定不变,所以烧成带温度控制器应该是定值控制,起主导作用。而燃烧室温度控制器则起辅助作用。它在克服干扰D2的同时,应该受烧成带温度控制器的操纵,操纵方法就是烧成带温度控制器的输出作为燃烧室温度控制器的设定值,从而就形成了图6-4所示的串
7、级控制系统。,比较上述两个控制系统,它们各有自己的长处。第一种控制系统包括了所有干扰,第二种控制系统能对主要的和一些次要干扰提前发现,及早控制。如果能将两个控制系统结合?起来,发挥各自优势,不是两全其美吗!另外,控制燃烧室的温度2并不是目的,真正的目的是烧成带的,11,所谓串级控制系统,就是采用两个控制器串联工作,主控制器的输出作为副控制器的设定值,由副控制器的输出去操纵控制阀,从而对主被控变量具有更好的控制效果。与图6-4串级控制系统的工艺流程图对应的原理方框图如图 6-5所示。,12,13,从图中可以看到,串级系统和简单系统有一个显著的区别,即其在结构上形成了两个闭环。一个闭环在里面,被称
8、为副环或者副回路,在控制过程中起着“粗调”的作用;一个环在外面,被称为主环或主回路,用来完成“细调”任务,以最终保证被调量满足工艺要求。无论主环或副环都有各自的调节对象、测量变送元件和调节器。,14,6.1.2 串级控制系统的组成1串级控制系统的方框图 根据隔焰式隧道窑串级控制系统的方框图,可得串级控制系统标准方框图如图6-6所示。,15,2.串级控制系统有关的术语 主、副回路 在外面的闭合回路称为主回路(主环),在里面的闭合回路称为副回路(副环)。主、副控制器 处于主回路中的控制器称为主控制器;处于副回路中的控制器称为副控制器。主、副被控变量 主回路的被控交量称为主被控变量,也称为主变量或主
9、参数;副回路的被控变量称为副被控变量,也称为副变量或副参数。,16,主、副对象 主回路所包括的对象称为主对象;副回路所包括的对象称为副对象。主、副检测变送器 检测和变送主变量的称为主检测变送器;检测和变送副变量的称为副检测变送器。一、二次干扰进入主回路的干扰称为一次干扰D1;进人副回路的干扰称为二次干扰D2。,17,应该指出,系统中尽管有两个调节器,它们的作用各不相同。主调节器具有自己独立的设定值,它的输出作为副调节器的设定值副调节器的输出信号则是送到调节阀去控制生产过程。比较串级系统和简单系统,前者只比后者多了一个测量变送元件和一个调节器,增加的仪表投资并不多,但控制效果却有显著的提高。,1
10、8,6l3 串级控制系统的工作过程 串级控制系统是由两个控制器串联工作的,只有副控制器的输出去操纵控制阀,两个控制器能否协调一致地工作,会不会发生矛盾,我们仍以隔焰式隧道窑温度串级控制系统为例来加以说明。考虑到生产的安全,控制阀选择“气开”工作方式。两个控制器都选择“反”作用方式。(1)只存在二次干扰(2)只存在一次干扰(3)一次干扰和二次干扰同时存在,19,1.只存在二次干扰 假定系统只受到来自燃料压力波动的干扰。由于它进入副回路,所以属于二次干扰D2。例如整个系统处于稳定状态下,突然燃料压力升高,这时尽管控制阀门开度没变,可燃料的流量增大了,首先将引起燃烧室温度2升高,经副温度检测变送器后
11、,副控制器接受的测量值增大。由于燃料流量的变化,并不能立即引起烧成带温度T1的变化。所以此时主控制器的输出暂时还没有变化,因此副控制器处于定值控制状态。根据副控制器的“反”作用,其输出将减小,“气开”式的控制阀门将被关小,燃料流量将被调节回稳定状态时的大小。,20,如果这个干扰幅度并不大,经副回路的调节,很快得到克服,不至于引起主变量的改变。如果这个干扰作用比较强,尽管副回路的控制作用已大大削弱了它对主变量的影响,但随着时间的推移,主变量仍会受到它的影响偏离了稳态值而升高。经主温度检测变送器后,主控制器接受到的测量信号增大。主控制器是定值控制,而且是“反”作用,所以主控制器的输出会减小。这就意
12、味着副控制器的设定值减小,从而会使得副控制器在原来的基础上变的更小,也即阀门开度也将再关小一点,以克服干扰对主变量的影响。,21,2.只存在一次干扰 假定串级控制系统只受到来自窑车速度的干扰,比如窑车的速度加快,必然导致窑道中烧成带温度1的降低。对于定值控制的主控制器来说,其测量值减小,由于主控制器的“反”作用,它的输出必然增大,也就是说副控制器的设定值增大了。因为窑车的速度属于一次干扰,它对副变量(燃烧室的温度2)没有影响,所以这时副控制器的测量值暂时还没有改变。对于副控制器来说,设定值增大而测量值没变,可以等效为其设定值不变而测量值减小。根据副控制器的“反”作用,其输出将增大,“气开”式的
13、控制阀门开度增大,从而加大燃料的流量,使燃烧室温度2升高,进而使窑道烧成带温度回升至设定值。,22,3.一次干扰和二次干扰同时存在 两种干扰同时存在又可分为两种不同情况。一次干扰和二次干扰引起主变量和副变量同方向变化,即同时增大或同时减小。假定一次干扰为窑车的前进速度减小,将引起主变量(烧成带温度)l升高;二次干扰为燃料压力增大,导致副变量(燃烧室温度)2也升高。对于主控制器来讲,由于它的测量值升高,根据它的“反作用关系,它的输出将在稳态时的基础上减小,也就是副控制器的设定值将减小。而对于副控制器来讲,由于它的测量值增大,其输出的变化应该根据它的“反”作用以及设定值和测量值的变化方向共同决定。
14、不妨将设定值的变化等效为设定值不变而测量值变化的情况,设定值减小可以等效为设定值不变而测量值增大。根据副控制器的“反”作用关系,上述两种作用都将使副控制器的输出减小,都要求阀门开度关小。,23,此时调节阀的作用是主、副控制器作用的叠加。减小燃料的流量不仅是为了克服二次干扰把燃烧室的温度调回到稳态值,而且是使燃烧室的温度比稳态值更低一些用于克服一次干扰对主变量的影响。,24,一次干扰和二次干扰引起主、副变量反方向变化,即一个增大而另一个减小。假定一次干扰为窑车前进速度增大,引起主变量(烧成带温度)l下降;二次干扰为燃料压力增大,导致副变量(燃烧室温度)T2升高。对主控制器来说,由于其测量值减小,
15、根据其“反”作用关系,它的输出将增大,也将使副控制器的设定值增大。对副控制器来说,由于其测量值增大,设定值也增大,如果它们同步增大,幅度相同,即副控制器的输入信号偏差没有改变,控制器的输出当然也就不变,控制阀开度不变。实际上就是用二次干扰补偿了一次干扰,阀门无需调节。如果两个干扰引起副控制器的设定值和测量值的同向变化不相同,也就是说二次干扰还不足以补偿一次干扰时,副控制器再根据偏差的性质作小范围调节即可将主变量稳定在设定值上。,25,从串级控制系统的工作过程可以看出,两个控制器串联工作,以主控制器为主导,保证主变量稳定为目的,两个控制器协调一致,互相配合。尤其是对于二次干扰,副控制器首先进行“
16、粗调”,主控制器再进一步“细调”。因此控制质量必然高于简单控制系统。,26,6.2 串级控制系统的分析,串级控制系统与简单控制系统相比,只是在结构上增加了一个副回路,但是实践证明,对于相同的干扰,串级控制系统的控制质量是简单控制系统所无法比拟的。本节将从理论上对串级控制系统的特点加以分析。,27,6.2.1 增强系统的抗干扰能力,串级控制系统的副环具有快速作用,它能够有效地克服二次扰动的影响。可以说串级系统主是用来克服进入副回路的二次干扰的。,28,现在对图6-7所示方框图进行分析,可进一步揭示问题的本质。当二次干扰经过干扰通道环节Gd2(s)后,进入副环,首先影响副参数y2,于是副调节器立即
17、动作,力图消弱干扰对y2的影响。显然,干扰经过副环的抑止后再进入主环,对y1的影响将有较大的减弱。,29,按图6-7所示串级系统,可以写出二次干扰 D 2至主参数y1的;传递函数是,(6-1),30,为了与一个简单回路控制系统相比较,由图6-8可以很容易地得到单回路控制下D 2至y1的传递函数为,(6-2),31,比较式(6-l)和(6-2)。先假定 Gc(s)Gcl(s),且注意到单回路系统中的 Gm(s)就是串级系统中的Gm1(s),可以看到,串级中Y1(s)D2(s)的分母中多了一项,即Gc2(s)Gv(s)Gp2(s)Gm2(s)。在主环工作频率下,这项乘积的数值一般是比较大的,而且随
18、着副调节器比例增益的增大而加大;另外式(6-l)的分母中第三项比式(6-2)分母中第二项多了一个Gc2(s)。一般情况下,副调节器的比例增益是大于 l的。因此可以说,串级控制系统的结构使二次干扰 D2对主参数y1这一通道的动态增益明显减小。当二次干扰出现时,很快就被副调节器所克服。与单回路控制系统相比,被调量受二次干扰的影响往往可以减小10-100倍,这要视主环与副环中容积分布情况而定。,32,6.2.2 改善对象的动态特性,由于串级控制系统中的副回路起了改善对象动态特性的作用,因此可以加大主控器的增益,提高系统的工作频率。,33,34,1.减少了对象的时间常数 分析图6-7和6-8发现,串级
19、系统中的副回路似乎代替了简单控制系统中的一部分对象,即可以把整个副回路看成一个等效对象,即,假设副回路中各环节的传递函数为:,35,则,36,和 分别为等效对象的增益和时间常数。由于在任何情况下,都是成立的。因此有,这就表明,由于副回路的存在,起到改善动态特性的作用。等效对象的时间常数缩小了 倍,而且随着副调节器比例增益的增大而减小。时间常数的减少,意味着控制通道的缩短,从而使得控制作用更及时,响应速度更快,控制质量必然得到提高。,37,通常情况下,副对象是单容或双容对象,因此副调节器的比例增益可以取得很大,这样,等效时间常数就可以减到很小的数值,从而加快了副环的响应速度,提高了系统的工作频率
20、。由于等效对象的增益也减小了。这种减小不但不会影响控制质量,反而此时串级控制系统中主控制器的增益Kc1可以整定得比简单控制系统更大一些,从而提高系统的抗干扰能力。另外,串级控制系统对进入系统中的一次干扰D1的抗干扰能力也有一定的提高。因为副回路的存在,减小了对象的时间常数,对于主回路来说,其控制通道缩短了,所以克服一次干扰比同等条件下的简单控制系统及时了。,38,2.提高了系统的工作频率根据6-7所示的串级控制系统,可以得到其特征方程为:,将6-3式 代入上式:,整理后可得串级控制系统的特征方程为:,39,假设主副回路各环节的传递函数为,代入上式整理后可得串级控制系统的特征方程为:,40,对比
21、二阶标准系统特征方程,可知串级控制系统的工作频率为,而对于如图6-8所示的简单控制系统,特征方程为,注意,且注意到简单控制系统中的 就是串级控制系统中的 后,将有关传递函数代入上式后整理得,41,对比标准二阶系统的特征方程,同样可得简单控制系统的工作频率为,如果假定通过控制器参数的整定,使得串级控制系统与简单控制系统的阻尼比(或衰减率)相同,即,则利用式6-10和6-12得,42,因为,所以。即串级控制系统的工作频率大于简单控制系统的工作频率。由以上分析可知,串级控制系统由于副回路的存在,使整个系统的工作频率提高了,改善了系统的控制品质。当主、副对象的特性一定时,副控制器的增益Kc2整定的越大
22、,这种效果越明显。,43,6.2.3 对负荷变化有一定的自适应能力,众所周知,生产过程往往包含一些非线性因素。随着操作条件和负荷的变化,对象的静态增益也将发生变化。因此,在一定负荷下,即在确定的工作点情况下,按一定控制质量指标整定的控制器参数只适应于工作点附近的一个小范围。如果负荷变化过大,超出这个范围,那么控制质量就会下降。在单回路控制中若不采取其它措施是难以解决的。但在串级系统中情况就不同了,负荷变化引起副回路内个各环节参数的变化,可以较少影响或不影响系统的控制质量。,44,一方面可以用式(6-3)所表示的等效副对象的来表示,即等效对象的传递函数为一般情况下,因此(6-13),45,由式(
23、6-13)可知,串级系统中的等效对象仅与测量变送装置有关。如果副对象或调节阀的特性随负荷变化时,对等效对象的影响不大。只要测量变送环节进行了线性化处理,副对象和调节阀的非线性特性对整个系统的控制品质影响是很小的。因而在不改变控制器整定参数的情况下,系统的副回路能自动地克服非线性因素的影响,保持或接近原有的控制质量。,46,另一方面,由于副回路通常是一个流量随动系统,当系统操作条件或负荷改变时,主控制器将改变其输出值,副回路能快速跟踪及时而又精确地控制流量,从而保证系统的控制品质。从上述两个方面看,串级控制系统对负荷的变化有一定自适应能力。,综上所述,可以将串级控制系统具有较好的控制性能的原因归
24、纳为:对二次干扰有很强的克服能力;改善了对象的动态特性,提高了系统的工作频率,对负荷或操作条件的变化有一定自适应能力。,47,6.3 串级控制系统的设计,一般来说,一个设计合理的串级控制系统,当干扰从副回路进入时,其最大偏差将会减少到简单控制系统的1/101/100。即使干扰是从主回路进入,其最大偏差也会减小到简单控制系统的1/31/5.主变量的选择 如果把串级控制系统中整个闭环副回路作为一个等效对象来考虑,可以看到主回路与一般单回路控制系统没有什么区别,主变量的选择原则与单回路控制系统的选择原则是一致的,无须特殊讨论。下面就副回路的设计,副参数的选择,主、副回路之间的关系,一个系统中有两个控
25、制器会产生什么问题等予以讨论。,48,6.3.1 副回路的选择,从上一节分析可知,串级系统的种种特点都是因为增加了副回路的缘故。可以说,副路的设计质量是保证发挥串级系统优点的关键所在。从结构上看,副回路也是一个单回路,问题的实质在于如何从整个对象中选取一部分作为副对象,然后组成一个副控制回路,这也可以归纳为如何选择副参数。下面是有关副回路设计的几个原则。,49,1副参数的选择应使副回路的时间常数小,调节通道短,反应灵敏,通常串级系统被用来克服对象的容积滞后和纯迟延。也就说,总是这样来选择副参数,使得副回路时间常数小,调节通道短,从而使等效对象的时间常数大大减小,提高了系统的工作频率,加速了反应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 章串级 控制系统
链接地址:https://www.31ppt.com/p-6618711.html