第2章材料合成与制备的基本途径.ppt
《第2章材料合成与制备的基本途径.ppt》由会员分享,可在线阅读,更多相关《第2章材料合成与制备的基本途径.ppt(88页珍藏版)》请在三一办公上搜索。
1、2023/11/18/19:58:07,材料合成与制备,2023/11/18/19:58:07,第二章 材料合成与制备的基本途径,材料合成与制备的基本途径:基于液相固相转变的材料制备基于固相固相转变的材料制备基于气相固相转变的材料制备,2023/11/18/19:58:07,2.1基于液相固相转变的材料制备,基于液相固相转变的材料制备一般可分为两类:(1)是从熔体出发,通过降温固化得到固相材料,如果条件适合并且降温速率足够慢可以得到单晶体,如果采用快冷技术可以制备非晶(玻璃态)材料;(2)从溶液出发,在溶液中合成新材料或有溶液参与合成新材料,再经固化得到固相材料。,2023/11/18/19:
2、58:07,2.1.1 从熔体制备单晶材料,单晶材料,Single crystal:atoms are in a repeating or periodic array over the entire extent of the material Polycrystalline material:comprised of many small crystals or grains.The grains have different crystallographic orientation.There exist atomic mismatch within the regions where
3、grains meet.These regions are called grain boundaries.,2023/11/18/19:58:07,单晶材料,Basic Characteristic of Crystals,各向异性,均一性 同质性,Homogeneity Under macroscopic observation,the physics effect and chemical composition of a crystal are the same.Anisotropy Physical properties of a crystal differ according t
4、o the direction of measurement.,2023/11/18/19:58:07,Anisotropy,Different directions in a crystal have different packing.For instance,atoms along the edge of FCC unit cell are more separated than along the face diagonal.This causes anisotropy in the properties of crystals,for instance,the deformation
5、 depends on the direction in which a stress is applied.,2023/11/18/19:58:07,单晶材料的制备必须排除对材料性能有害的杂质原子和晶体缺陷。低杂质含量、结晶完美的单晶材料多由熔体生长得到。(1)从熔体中结晶 当温度低于熔点时,晶体开始析出,也就是说,只有当熔体过冷却时晶体才能发生。如水在温度低于零摄氏度时结晶成冰;金属熔体冷却到熔点以下结晶成金属晶体。(2)从熔体中结晶 当溶液达到过饱和时,才能析出晶体。其方式有:1)温度降低,如岩浆期后的热桩越远离岩浆源则温度将渐次降低,各种矿物晶体陆续析出.2)水分蒸发,如天然盐湖卤水蒸
6、发,盐类矿物结晶出来.3)通过化学反应,生成难溶物质。,2023/11/18/19:58:07,Nonlinear Optical Crystal(LiB3O5)Scintillating Crystal(HgI).Scintillating Crystal(Bi4Ge3O12),Laser Crystals(YAl5O12)Electro-Optic Crystals(Bi12SiO20)Optical Crystals(CaF2),Nonlinear Optical Crystals(KNbO3)Nonlinear Optical Crystals(KNbO3)Nonlinear Opti
7、cal Crystals(KTiOPO4),2023/11/18/19:58:07,直拉法(Czochralski 法),特点是所生长的晶体的质量高,速度快。熔体置于坩埚中,一块小单晶,称为籽晶,与拉杆相连,并被置于熔体的液面处。加热器使单晶炉内的温场保证坩埚以及熔体的温度保持在材料的熔点以上,籽晶的温度在熔点以下,而液体和籽晶的固液界面处的温度恰好是材料的熔点。随着拉杆的缓缓拉伸(典型速率约为每分钟几毫米),熔体不断在固液界面处结晶,并保持了籽晶的结晶学取向。为了保持熔体的均匀和固液界面处温度的稳定,籽晶和坩埚通常沿相反的方向旋转(转速约为每分钟数十转).,直拉法单晶生长示意图1:籽晶;2:
8、熔体;3、4:加热器,高压惰性气体(如Ar)常被通入单晶炉中防止污染并抑制易挥发元素的逃逸.,2023/11/18/19:58:07,2023/11/18/19:58:07,This technique originates from pioneering work by Czochralski in 1917 who pulled single crystals of metals.Since crystal pulling was first developed as a technique for growing single crystals,it has been used to g
9、row germanium and silicon and extended to grow a wide range of compound semiconductors,oxides,metals,and halides.It is the dominant technique for the commercial production of most of these materials.,2023/11/18/19:58:07,坩埚下降法(定向凝固法),基本原理使装有熔体的坩埚缓慢通过具有一定温度梯度的温场。开始时整个物料都处于熔融状态,当坩埚下降通过熔点时,熔体结晶,随着坩埚的移动,
10、固液界面不断沿着坩埚平移,直至熔体全部结晶。使用此方法,首先成核的是几个微晶,可使用籽晶控制晶体的生长。,坩埚下降法单晶生长装置和温场示意图1:容器;2:熔体;3:晶体;4:加热器;5:下降装置;6:热电偶;7:热屏,2023/11/18/19:58:07,区熔法,沿坩埚的温场有一个峰值,在这个峰值附近很小的范围内温度高于材料的熔点。这样的温场由环形加热器来实现。在多晶棒的一端放置籽晶,将籽晶附近原料熔化后,加热器向远离仔晶方向移动,熔体即在籽晶基础上结晶。加热器不断移动,将全部原料熔化、结晶,即完成晶体生长过程。,水平和悬浮区熔法单晶生长示意图1:仔晶;2:晶体;3:加热器;4:熔体;5:料
11、棒;6:料舟,2023/11/18/19:58:07,区熔法,悬浮区熔法不用容器,污染较小,但不易得到大尺寸晶体。利用溶质分凝原理,区熔法还被用来提纯单晶材料,多次区熔提纯后使晶体中的杂质聚集在材料的一端而达到在材料的其他部分提纯的目的。,2023/11/18/19:58:07,液相外延(LPE),选择合适的衬底,可以从熔体中得到单晶薄膜.,液相外延生长技术示意图1:热电偶;2:石墨料舟;3:不同组分的熔体;4:衬底,料舟中装有待沉积的熔体,移动料舟经过单晶衬底时,缓慢冷却在衬底表面成核,外延生长为单晶薄膜。在料舟中装人不同成分的熔体,可以逐层外延不同成分的单晶薄膜。,工艺简单,能够制备高纯度
12、结晶优良的外延层,但不适合生长较薄的外延层。,2023/11/18/19:58:07,2.1.2 从熔体制备非晶材料,高温熔体处于无序的状态,使熔体缓慢降温到熔点,开始成核、晶核生长,结晶为有序的晶体结构。随着温度的降低,过冷度增加,结晶的速率加快。当温度降到一定值时,结晶速率达到极大值。进一步降低温度,因为熔体中原子热运动的减弱,成核率和生长速率都降低,结晶速率也因此而下降。,2023/11/18/19:58:07,从熔体制备非晶材料,如果能使熔体急速地降温,以至生长甚至成核都来不及发生就降温到原子热运动足够低的温度,这样就可以把熔体中的无序结构“冻结”保留下来,得到结构无序的固体材料,即非
13、晶,或玻璃态材料。主要的急冷技术有雾化法、急冷液态溅射、表面熔化和自淬火法。,2023/11/18/19:58:07,从熔体制备非晶材料,雾化法是将熔融金属用气流、液体或机械方法破碎成小液滴,随后凝固成粉末。冷却速率一般为103105Ks;急冷液态溅射是将熔融金属或合金溅射到高速旋转的具有高导热系数的辊面上,熔体在辊面上急速降温,形成2050mm 厚的非晶薄带。,急冷液态溅射法制备非晶薄带示意图1 一铜辊;2 一加热器;3 一熔体;4 一非晶薄带,熔体被气压溅射到高速旋转的铜辊面上,降温速率可达105105Ks。,2023/11/18/19:58:07,从熔体制备非晶材料,表面熔化和自淬火法用
14、激光束或电子束使合金表面一薄层(厚度10mm)迅速熔化,未熔化部分为冷体,使熔化层迅速凝固。冷却速率可达105108Ks。这种方法可以在大尺度材料表面获得急冷凝固层,是一种具有工业应用前景的技术。,2023/11/18/19:58:07,2.1.3 溶液法材料制备,溶液法可用来生长单晶材料,也可用于制备粉末、薄膜和纤维等材料。溶液是均匀、单相的,从溶液中制备晶体材料,原子无需长程扩散,因而溶液法比固相反应所需的温度低得多。,2023/11/18/19:58:07,溶液法制备单晶材料,基本原理是使晶体原料作为溶质,溶于合适的溶剂中,用一定的方法使溶液过饱和,从而结晶。通过放置仔晶,可以对晶体的取
15、向进行控制。,溶液生长得到的单晶光学均匀性较好,但生长速率较低。,2023/11/18/19:58:07,溶液变温法生长单晶,饱和溶液和仔晶置于容器中,以一定的速率降低溶液温度,溶质在仔晶上析出,晶体得以长大。溶液生长单晶的关键是消除溶液中的微晶,并精确控制温度。,溶液变温法生长单晶示意图1:温度计;2、3:固定螺丝;4:罩板;5:导电表;6、7、8:加热器;9:固定支架,2023/11/18/19:58:07,溶液法制备单晶材料,低温溶液生长通常使用的溶剂是水,生长有机晶体时常用丙酮、乙醇、四氯化碳等有机溶剂。制备通常条件下不溶于水的物质,如水晶(SiO2)、磷酸铝(AlPO4)等。超临界水
16、是有效的溶剂,使用超临界水作溶剂的方法称为水热法。,2023/11/18/19:58:07,水热法制备单晶材料,水热法的主要设备是高压釜以生长水晶为例,将原料SiO2置于釜底,加入水作溶剂并加入助溶剂NaOH,仔晶挂在釜的上部。控制高压釜上部温度约350C,底部温度约400C。釜内加压至70MPa,使水进入超临界状态。釜底部SiO2 不断溶解,溶液对流至釜上部,上部温度较低,溶液成为过饱和溶液,溶质在仔晶上析出,晶体不断长大。降温后溶液回到底部,重新溶解原料,如此往复,直到原料完全转化成晶体。,水热法和高压釜结构示意图1:塞子;2:闭锁螺母;3:釜体;4:钢环;5:铜环;6:钛密封垫;7:钛内
17、衬;8:仔晶;9:水溶液,2023/11/18/19:58:07,When this altered water(350C)comes in contact with cold seawater(2C)many reactions take place Fe2+H2S FeS solid Ca2+SO4-CaSO4 solid Other reduced metal sulfides form,all insoluble at ambient temperatures,“水热”一词大约出现在150年前,本用于地质学中描述地壳中的水在温度和压力联合作用下的自然过程,以后越来越多的化学过程也广泛使
18、用这一词汇,2023/11/18/19:58:07,水热反应釜,密封结构,压力,温度,无机分子物种(反应物),合成添加剂,溶剂,釜体,晶核、产物,矿化剂(mineralizer),提高溶质溶解度,加速结晶 eg.NaOH,2023/11/18/19:58:07,水热法原理,水热生长晶体的方法:主要有温差法、降温法(或升温法)及等温法等,都是通过不同的物理化学条件使生长系统内的液相获得适当的过饱和状态而结晶。降温法是依靠体系缓慢降温来获得过饱和的,由于降温范围和溶解度温度系数的限制,生长大晶体需要经过多次降温的过程,反复操作很不方便,同时也影响晶体的质量。,2023/11/18/19:58:07
19、,等温生长法基于欲生长的晶体与所用原料的溶解度不同而形成过饱和状态来生长晶体,这种方法随着原料的同晶型化,两者溶解度逐渐相近而会使生长速率趋于零,也不宜于生长大的晶体。温差水热结晶法是目前普遍采用的方法,它依靠容器内的溶液维持温差对流而形成过饱和状态。这样,可以根据需要经数周以至上百天稳定的持续生长,并且可以根据原料与籽晶的比例,通过缓冲器和加热带来调整温差。,水热法原理,2023/11/18/19:58:07,完成温差水热结晶的必要条件如下:在高温高压的某种矿化剂水溶液中,能促使晶体原料具有一定值(例如1.5-5)的溶解度,并形成稳定的所需的单一晶相;有足够大溶解度温度系数,以使得在适当的温
20、差下就能形成足够过饱和度而又不产生过分的自发成核;具备适于晶体生长所需的一定切型和规格的籽晶,并使原料的总表面积与籽晶总表面积之比值达到足够大;溶液密度的温度系数要足够大,使得溶液在适当的温差条件下具有引起晶体生长的溶液对流和溶质传始作用;备有耐高温高压、抗腐蚀的容器。,2023/11/18/19:58:07,温差水热结晶法,2023/11/18/19:58:07,Hydrothermally Grown Quartz,2023/11/18/19:58:07,2023/11/18/19:58:07,高温溶液法制备材料,高温溶液生长的典型温度在1000C 左右,远高于水的沸点。这时溶剂需使用液态
21、金属,如液态Ga(溶解As)、Pb、Sn 或Zn 等(溶解S、Ce、GaAs 等);或使用熔融无机化合物,如KF(溶解BaTiO3)、Na2B4O7(溶解Fe2O3)等。这些无机溶剂有效的降低了溶质的熔点,能生长其他方法不易制备的高熔点化合物,如钇铁石榴石(YIG)和钛酸钡(BaTiO3)等。,2023/11/18/19:58:07,化学共沉淀法制备材料,一种或多种金属盐在溶液中发生化学反应,生成不溶的沉淀物微粉。一个简单的例子是将地AgNO3 和NaCl的水溶液混合,发生反应生成AgCl 沉淀。实际应用中的沉淀过程非常复杂,需要调节溶液的pH 值、温度、浓度等来控制反应速度和沉淀是否完全。,
22、2023/11/18/19:58:07,沉淀法、共沉淀法之原理,原理 K Ksp,沉淀/共沉淀。方法 化学共沉淀法是把含有各种离子的水溶液加进碱类或沉淀剂,例如草酸等沉淀剂使水溶液形成氢氧化物或草酸盐沉淀,然后室温或升温陈化(aging),使结构进一步稳定,最后煅烧。,2023/11/18/19:58:07,沉淀法、共沉淀法之优缺点,优点 1各种离子在沉淀物中以离子状态混合,混合程度通常非常良好,在溶解度限内不会有局部成份不均现象。2沉淀物是非晶态氢氧化物或低分解温度的草酸盐,且因混合程度本已良好,可以降低煅烧温度。3由于低温煅烧,研磨时间可缩短,较易获得没有受到磨球污染,粒径很细的粉末。4化
23、学共淀法具有自清作用,一些有害的杂质可以尽量避免沉淀下来,以提高沉淀物的纯度。,2023/11/18/19:58:07,沉淀法、共沉淀法之优缺点,缺点:1.化学共沉淀法所得非晶形沉淀物,其化学组成常受不同离子在同一pH 下溶解度不同,或极其不易沉淀物种(如Li+1),或不同沉淀剂盐类(例如草酸盐)的溶解度不同,而影响沉淀物的组成。2.化学共沉淀法所得沉淀物为非晶形,仍需要相当高温的煅烧。3.比起固相反应法费时、费力、耗用水量过多,及生产过程过份复杂,成本高,以致至今被采用的例子不多。,2023/11/18/19:58:07,沉淀(共沉)法合成技术,随着无机非金属材料,特别是陶瓷材料的精密化发展
24、,材料成分的均匀性显得越来越重要。传统固相合成技术难以使材料达到分子或原子程度化学计量比混合,采用化学共沉淀法(chemical co-precipitation)往往可以解决这个问题,从而达到较低生产成本、制备高性能陶瓷材料的目的。化学共沉淀法一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂(pH 调整剂或难溶化合物生成剂),使溶液中已经混合均匀的各个组分按化学计量比共同沉淀出来,或者在溶液中先反应沉淀出一种中间产物(precursor 前驱物),再把它煅烧(calcination)分解,制备出微细粉末产品。,2023/11/18/19:58:07,沉淀(共沉)法合成技术,常用方法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 合成 制备 基本 途径
链接地址:https://www.31ppt.com/p-6617642.html