集合与简易逻辑-数理-大纲.ppt
《集合与简易逻辑-数理-大纲.ppt》由会员分享,可在线阅读,更多相关《集合与简易逻辑-数理-大纲.ppt(98页珍藏版)》请在三一办公上搜索。
1、大纲版,本课件为“逐字编辑”课件,使用时欲修改课件,请双击对应内容,即可进入可编辑状态。在此状态下,如果有的公式双击后无法用公式编辑器编辑,请选中此公式,点击右键、“切换域代码”,即可进行编辑。修改后再点击右键、“切换域代码”,即完成修改。如有疑问欢迎致电:,使用说明,目录,第1讲 集合第2讲 简单不等式的解法第3讲 简易逻辑,第一单元集合与简易逻辑,第一单元集合与简易逻辑,第一单元 知识框架,第一单元 考纲要求,【考试内容】集合子集补集交集并集逻辑联结词四种命题充分条件和必要条件【考试要求】(1)理解集合、子集、补集、交集、并集的概念了解空集和全集的意义了解属于、包含、相等关系的意义掌握有关
2、的术语和符号,并会用它们正确表示一些简单的集合(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系掌握充分条件、必要条件及充要条件的意义,第一单元 复习策略,本单元是整个高中阶段的起始内容,集合语言和充要条件贯穿高中数学之中,是基本数学语言和重要解题工具集合在高考中以考查集合的概念,元素与集合、集合与集合之间的关系,集合的交、并、补运算为重点,以上内容又以集合的运算为重点考查内容逻辑联结词与充要条件,以充要条件为重点考查内容在高考中,本单元有12道题,分值510分,题型为选择题或填空题,难度中低等预计在2012年的高考中,这种命题模式将会继续保持不变,第一单元 复习策略,(
3、1)对于集合概念,要紧扣集合本身的概念和元素满足的性质,适时进行准确简化与合理转化(2)本单元,集合的运算是复习的重点,求解时,要注重数形结合思想的运用(3)含绝对值的不等式的解法关键是掌握去绝对值的方法,一元二次不等式的解法中,要加强二次函数、一元二次不等式、一元二次方程的相互联系(4)对简易逻辑问题,应先理清概念,熟悉定义,通过适当练习增加对知识的掌握,第一单元 使用建议,1编写意图本单元是整个高中数学教学的基础在高考中,对本单元内容的考查将更灵活,但主要作为一种基础性、工具性知识考查编写中注意到以下几个问题:(1)考虑到该部分在高考试题中的考查特点和难度,加强了对基础知识、基本方法的讲解
4、和练习题的力度,控制了选题的难度;(2)从近几年高考来看,涉及该部分内容的新定义是高考的一个热点话题,因此适当加入了类似的题目;(3)考虑到该部分内容是第一轮初始阶段复习的知识,因此在选题时尽量避免选用综合性强,思维难度大的题目,第一单元 使用建议,2教学指导高考对该部分内容要求不高,教师在引导学生复习该部分时,切忌对各层次知识点随意拔高,习题一味求深、求广、求难教学时,需注意以下几个问题:(1)集合主要是强调其工具性和应用性,解决集合间关系与运算问题时,要引导学生充分利用图或数轴的直观性来帮助解题;(2)简单的不等式的解法,要注意数学思想方法的运用,特别是对一元二次不等式,要加强二次函数、一
5、元二次不等式、一元二次方程这三部分知识之间的联系的复习;(3)简易逻辑,一是要注意逻辑联结词“或”、“且”、“非”与集合中的“并”、“交”、“补”的关系,二者相互对照,加深对双方的认识和理解;,第一单元 使用建议,二是对于四种命题及其关系,要切实掌握其概念,从概念入手处理;三是对于充要条件,要加强与其他知识的联系,如数列、不等式、立体几何等,重点关注充要条件的判断3课时安排本单元包含3讲及一个单元能力训练卷,每讲1个课时,单元能力训练卷占1课时,共需4个课时完成,第1讲 集合,第1讲集合,第1讲 编读互动,现代数学是用集合语言描述的,深刻理解集合的概念、基本表示法,是成功跨入现代数学大门的前提
6、本讲以集合知识为考试重点,涉及的多是集合的基本运算虽说涉及这一部分内容的试题仅以考查基本概念、基本运算为主,但以本部分知识为工具,与其他知识交汇的题目却层出不穷,对此应予以充分关注,尤其是每年都有与集合有关的创新题出现本讲的主要内容包括集合的概念,集合的运算等,概念比较多,重点是理解集合的有关概念,弄清楚集合属于哪种集合(数集、点集或图形集等),掌握集合交、并、补三种运算,建议教学时主要是帮助学生理清概念,尤其是对描述法的理解在集合的运算教学中,要渗透数形结合的思想本讲在例题部分,由浅入深,循序渐进设计五个例题,在能力提升中,加强了集合中创新题型的训练,第1讲 编读互动,1集合的基本概念与集合
7、间的关系(1)集合中元素的特性:确定性、_、无序性(2)集合的分类:按所含元素个数分为_、_、空集(3)集合的表示方法:_、_、图示法(4)几类常见数集的符号表示,第1讲 知识梳理,互异性,有限集,无限集,列举法,描述法,N,Q,第1讲 知识梳理,(5)元素与集合、集合与集合间关系的比较,任何一个元素,AB,第1讲 知识梳理,AB,第1讲 知识梳理,2.集合的基本运算,ABx|xA且xB,ABx|xA或xB,UAx|xU且xA,第1讲 知识梳理,3.集合运算的性质(1)交集的运算性质:AB_,AA_,A_.(2)并集的运算性质:AB_,AA_,A_.(3)补集的运算性质:UU_,U_,U(UA
8、)_,A(UA)_,A(UA)_.(4)交、并、补集的关系:(UA)(UB)_,(UA)(UB)_.4集合运算中的包含关系(1)(AB)_A_(AB),(AB)_B_(AB)(2)A_BABA,A_BABB.,BA,A,BA,A,A,A,U,U,探究点1绝对值不等式的解法,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,点评 解绝对值不等式的关键是去掉绝对值符号,将其转化为一般的不等式或不等式组求解去掉绝对值常用方法:绝对值的代数意义;公式法;平方法:两边都是非负数时,取平方去掉绝对值符号;零点分段讨论,一般来说一个零点分两个范围,两个零点分三个范围,
9、依次类推;数形结合法等,第1讲 要点探究,变式题,第1讲 要点探究,第1讲 要点探究,点评 对于含有参数的不等式,首先要弄清引起讨论的原因,然后按统一标准进行分类,分类时要保证参数“取足”给定范围且避免重复,在解本题时容易忽略a0的情况,这里一定要引起注意,探究点2一元二次不等式及分式不等式的解法,第1讲 要点探究,第1讲 要点探究,点评 解含参二次不等式,可能出现的讨论有:对二次项系数符号的讨论;对判别式符号的讨论;对两根大小的讨论,第1讲 要点探究,点评 分式不等式的求解,常采用移项、通分,不等式右边化为0,再将分式不等式转化为整式不等式(组)求解,探究点3“三个二次”之间的关系,第1讲
10、要点探究,第1讲 要点探究,点评 解决二次问题的关键一是充分利用数形结合思想,二是熟练进行“三个二次”的相互转化,第1讲 要点探究,变式题,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,第1讲 要点探究,点评 一元二次方程根的分布问题的求解,常常需要利用一元二次方程根的判别式、根与系数关系以及“三个二次的关系”解决,第1讲 规律总结,1解含绝对值不等式的关键是去掉绝对值符号,一般有五种方法:绝对值的代数意义;公式法;平方法;零点分段讨论法:一般来说一个零点分两个范围,两个零点分三个范围,依次类推;数形结合法等2一元二次方程、一元二次不等式、二次函数三
11、者有着密切的联系,因此在一元二次不等式求解时,要注意利用相应二次函数图象及相应二次方程的根迅速求出解集,掌握数形结合思想,第1讲 规律总结,3求解含参数的不等式时常常需要分类讨论,分类要确保不重不漏如解关于x的含参数t的不等式f(t)x2g(t)xr(t)0(0),可能出现的讨论有:对二次项系数符号的讨论;对判别式符号的讨论;对两根大小的讨论讨论时,要做到不重不漏4解分式不等式要注意分母不等于零,第2讲 简单不等式的解法,第2讲简单不等式的解法,第2讲 编读互动,本讲主要内容是复习含绝对值不等式及一元二次不等式的解法解含绝对值不等式的关键是如何去掉绝对值符号,重点是如何将含绝对值不等式等价转化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合 简易 逻辑 数理 大纲

链接地址:https://www.31ppt.com/p-6613272.html