阶线性方程 高等数学微积分.ppt
《阶线性方程 高等数学微积分.ppt》由会员分享,可在线阅读,更多相关《阶线性方程 高等数学微积分.ppt(33页珍藏版)》请在三一办公上搜索。
1、1.一阶线性微分方程的标准形式:,上方程称为齐次的.,上方程称为非齐次的.,6.2.4 一阶线性微分方程,例如,线性的;,非线性的.,齐次方程的通解为,(1)线性齐次方程,2.一阶线性微分方程的解法,(使用分离变量法),(2)线性非齐次方程,讨论,两边积分,非齐次方程通解形式,与齐次方程通解相比:,常数变易法,把齐次方程通解中的常数变易为待定函数的方法.,实质:未知函数的变量代换.,作变换,积分得,一阶线性非齐次微分方程的通解为:,对应齐次方程通解,非齐次方程特解,解,例1,求下列微分方程满足所给初始条件的特解:,解,于是,将方程标准化为,求下列微分方程满足所给初始条件的特解:,解,于是,将方
2、程标准化为,故所求特解为,由初始条件,得,例3 如图所示,平行于 轴的动直线被曲 线 与 截下的线段PQ之长数值上等于阴影部分的面积,求曲线.,两边求导得,解,解此微分方程,所求曲线为,已知函数.,解,原方程实际上是标准的线性方程,其中,直接代入通解公式,得通解,求解方程,解,方程变为,这个方程不是一阶线性微分方程,不便求解.,如果,方程改写为,则为一阶线性微分方程,于是对应齐次方程为,解,利用常数变易法,设题设方程,分离变量,即,并积分得,代入原方程,积分得,的通解为,得,故原方程的通解为,例6 求方程,的通解.,解:注意 x,y 同号,由一阶线性方程通解公式,得,故方程可,变形为,所求通解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 阶线性方程 高等数学微积分 线性方程 高等数学 微积分
链接地址:https://www.31ppt.com/p-6613240.html