计算机算法与设计课件第二章.ppt
《计算机算法与设计课件第二章.ppt》由会员分享,可在线阅读,更多相关《计算机算法与设计课件第二章.ppt(54页珍藏版)》请在三一办公上搜索。
1、第2章 递归与分治策略,学习要点:理解递归的概念。掌握设计有效算法的分治策略。通过下面的范例学习分治策略设计技巧。(1)二分搜索技术;(2)大整数乘法;(3)Strassen矩阵乘法;(4)棋盘覆盖;(5)合并排序和快速排序;(6)线性时间选择;(7)最接近点对问题;(8)循环赛日程表。,将要求解的较大规模的问题分割成k个更小规模的子问题。,算法总体思想,n,T(n/2),T(n/2),T(n/2),T(n/2),T(n),=,对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,算法总体思想,对这k个子问题分别
2、求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。,n,T(n),=,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,算法总体思想,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,n,T(n),=,算法总体思想,将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。,2.1 递归的概念,直接或间接地调用自身的算法称为递归算
3、法。用函数自身给出定义的函数称为递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。,下面来看几个实例。,2.1 递归的概念,例1 阶乘函数 阶乘函数可递归地定义为:,边界条件,递归方程,边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。,2.1 递归的概念,例2 Fibonacci数列无穷数列1
4、,1,2,3,5,8,13,21,34,55,称为Fibonacci数列。它可以递归地定义为:,边界条件,递归方程,第n个Fibonacci数可递归地计算如下:int fibonacci(int n)if(n=1)return 1;return fibonacci(n-1)+fibonacci(n-2);,2.1 递归的概念,例3 Ackerman函数当一个函数及它的一个变量是由函数自身定义时,称这个函数是双递归函数。Ackerman函数A(n,m)定义如下:,2.1 递归的概念,例3 Ackerman函数前2例中的函数都可以找到相应的非递归方式定义:,本例中的Ackerman函数却无法找到非
5、递归的定义。,2.1 递归的概念,例3 Ackerman函数A(n,m)的自变量m的每一个值都定义了一个单变量函数:M=0时,A(n,0)=n+2M=1时,A(n,1)=A(A(n-1,1),0)=A(n-1,1)+2,和A(1,1)=2故A(n,1)=2*nM=2时,A(n,2)=A(A(n-1,2),1)=2A(n-1,2),和A(1,2)=A(A(0,2),1)=A(1,1)=2,故A(n,2)=2n。M=3时,类似的可以推出M=4时,A(n,4)的增长速度非常快,以至于没有适当的数学式子来表示这一函数。,2.1 递归的概念,例3 Ackerman函数定义单变量的Ackerman函数A(
6、n)为,A(n)=A(n,n)。定义其拟逆函数(n)为:(n)=minkA(k)n。即(n)是使nA(k)成立的最小的k值。(n)在复杂度分析中常遇到。对于通常所见到的正整数n,有(n)4。但在理论上(n)没有上界,随着n的增加,它以难以想象的慢速度趋向正无穷大。,2.1 递归的概念,例4 排列问题设计一个递归算法生成n个元素r1,r2,rn的全排列。,设R=r1,r2,rn是要进行排列的n个元素,Ri=R-ri。集合X中元素的全排列记为perm(X)。(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:,当n=1时,perm(R)=(r
7、),其中r是集合R中唯一的元素;当n1时,perm(R)由(r1)perm(R1),(r2)perm(R2),(rn)perm(Rn)构成。,2.1 递归的概念,例5 整数划分问题将正整数n表示成一系列正整数之和:n=n1+n2+nk,其中n1n2nk1,k1。正整数n的这种表示称为正整数n的划分。求正整数n的不同划分个数。,例如正整数6有如下11种不同的划分:6;5+1;4+2,4+1+1;3+3,3+2+1,3+1+1+1;2+2+2,2+2+1+1,2+1+1+1+1;1+1+1+1+1+1。,(2)q(n,m)=q(n,n),mn;最大加数n1实际上不能大于n。因此,q(1,m)=1。
8、,(1)q(n,1)=1,n1;当最大加数n1不大于1时,任何正整数n只有一种划分形式,即,(4)q(n,m)=q(n,m-1)+q(n-m,m),nm1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1 的划分组成。,(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。,2.1 递归的概念,例5 整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q
9、(n,m)的如下递归关系。,2.1 递归的概念,例5 整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,正整数n的划分数p(n)=q(n,n)。,2.1 递归的概念,例6 Hanoi塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在
10、移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。,在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。,当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n
11、-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的递归算法如下。,2.1 递归的概念,例6 Hanoi塔问题,void hanoi(int n,int a,int b,int c)if(n 0)hanoi(n-1,a,c,b);move(a,b);hanoi(n-1,c,b,a);,递归小结,优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。,缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。,解决方法:在递归算法中消除递归调用,使其转化为非递归算法。1、采用一个用
12、户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。2、用递推来实现递归函数。3、通过变换能将一些递归转化为尾递归,从而迭代求出结果。后两种方法在时空复杂度上均有较大改善,但其适用范围有限。,递归小结,分治法的适用条件,分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质利用该问题分解出的子问题的解可以合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。,因为问题的计算复杂性一般是随
13、着问题规模的增加而增加,因此大部分问题满足这个特征。,这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用,能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。,这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。,divide-and-conquer(P)if(|P|=n0)adhoc(P);/解决小规模的问题 divide P into smaller subinstances P1,P2,.,Pk;
14、/分解问题 for(i=1,i=k,i+)yi=divide-and-conquer(Pi);/递归的解各子问题 return merge(y1,.,yk);/将各子问题的解合并为原问题的解,分治法的基本步骤,人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。,分治法的复杂性分析,一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位
15、时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:,通过迭代法求得方程的解:,注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当minmi+1时,T(mi)T(n)T(mi+1)。,分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件,分析:比较x和a的中间元素amid,若x=
16、amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。,分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。,二分搜索技术,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。分析:,该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立
17、的。,二分搜索技术,给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x。,据此容易设计出二分搜索算法:template int BinarySearch(Type a,const Type,算法复杂度分析:每执行一次算法的while循环,待搜索数组的大小减少一半。因此,在最坏情况下,while循环被执行了O(logn)次。循环体内运算需要O(1)时间,因此整个算法在最坏情况下的计算时间复杂性为O(logn)。,大整数的乘法,请设计一个有效的算法,可以进行两个n位大整数的乘法运算,小学的方法:O(n2)效率太低分治法:,X=Y=X=a 2n/2+b Y=c 2n/2+d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 算法 设计 课件 第二
链接地址:https://www.31ppt.com/p-6606587.html