计算机控制系统的模拟化设计.ppt
《计算机控制系统的模拟化设计.ppt》由会员分享,可在线阅读,更多相关《计算机控制系统的模拟化设计.ppt(65页珍藏版)》请在三一办公上搜索。
1、第六章 数字控制器的连续化设计,引言,自动化控制系统的核心是控制器。控制器的任务是按照一定的控制规律,产生满足工艺要求的控制信号,以输出驱动执行器,达到自动控制的目的。在传统的模拟控制系统中,控制器的控制规律或控制作用是由仪表或电子装置的硬件电路完成的,而在计算机控制系统中,除了计算机装置以外,更主要的体现在软件算法上,即数字控制器的设计上。,本章主要知识点:,数字控制器的连续化设计步骤,数字PID控制算法,数字PID的改进,数字PID的参数整定,一、数字控制器的连续化设计步骤,基本设计思想设计假想连续控制器离散化连续控制器离散算法的计算机实现与校验,连续化设计的基本思想,把整个控制系统看成是
2、模拟系统,利用模拟系统的理论和方法进行分析和设计,得到模拟控制器后再通过某种近似,将模拟控制器离散化为数字控制器,并由计算机来实现。,D(s),设计假想连续控制器,1.原则上可采用连续控制系统中各种设计方法,工程上常采用已知结构的PID 控制算法,2.零阶保持器的处理方法,(1)采样周期足够小时,可忽略保持器,,(2)W 变换设计法:利用下面公式离散化后再进行W变换,按G(w)进行连续化设计?,连续控制器的离散化,根据连续控制器的传递函数,离散化方法有:,1.双线性变换法:,其中:,2.后向差分法:,其中,利用级数展开写成以下形式:,3.前向差分法:,其中:,前向差分法也可由数值微分中得到,用
3、差分代替微分。设微分控制规律为,两边求拉氏变换后可推导出控制器为,采用前向差分近似可得,上式两边求Z变换后可推导出数字控制器为,4.零极点匹配法:,离散算法的计算机实现,设计性能校验:常采用数字仿真方法验证,二、数字PID控制算法,根据偏差的比例(P)、积分(I)、微分(D)进行控制(简称PID控制),是控制系统中应用最为广泛的一种控制规律。,PID调节器之所以经久不衰,主要有以下优点:1.技术成熟,通用性强 2.原理简单,易被人们熟悉和掌握 3.不需要建立数学模型 4.控制效果好,P、I、D三个参数的优化配置,兼顾了动态过程的现在、过去与将来的信息,使动态过程快速、平稳和准确;,1模拟PID
4、调节器,对应的模拟PID调节器的传递函数为,PID控制规律以微分方程形式表示为:,KP为比例增益,KP与比例带成倒数关系即KP=1/Ti为积分时间,Td为微分时间u(t)为控制量,e(t)为偏差,2.数字PID控制器,由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。在计算机控制系统中,PID控制规律的实现必须用数值逼近的方法。当采样周期相当短时,用求和代替积分、用后向差分代替微分,使模拟PID离散化变为差分方程。这样就得到两种算式:(1)数字PID位置型控制算法(2)数字PID增量型控制算法,(1).数字PID位置型控制算法,一般连续形式(模拟形式):有微分方程和传递函数两
5、种形式,离散等效:在微分方程中,以求和替代积分,向后差分替代微分,得到位置算式,其中:,(2).数字PID增量型控制算法,根据控制器的传递函数,利用后向差分法离散化,化成差分方程形式,理想PID的增量差分形式(递推算式),其中,(4 33),(3)数字PID控制算法实现方式比较,控制系统中:如执行机构采用调节阀,则控制量对应阀门的开度,表征了执行机构的位置,此时控制器应采用数字PID位置式控制算法;如执行机构采用步进电机,每个采样周期,控制器输出的控制量,是相对于上次控制量的增加,此时控制器应采用数字PID增量式控制算法;,图 两种PID控制算法实现的闭环系统,(a)位置型,(b)增量型,控制
6、算法的比较:(1)增量算法不需要做累加,控制量增量的确定仅与最近几次误差采样值有关,计算误差或计算精度问题,对控制量的计算影响较小。而位置算法要用到过去的误差的累加值,容易产生大的累加误差。(2)增量式算法得出的是控制量的增量,例如阀门控制中、只输出阀门开度的变化部分,误动作影响小,必要时通过逻辑判断限制或禁止本次输出,不会严重影响系统的工作。而位置算法的输出是控制量的全量输出,误动作影响大。(3)采用增量算法,易于实现手动到自动的无冲击切换。,(4)数字PID控制算法流程,位置型控制算式的递推算法:利用增量型控制算法,也可得出位置型控制算法:u(k)=u(k-1)+u(k)=u(k-1)+q
7、0e(k)+q1e(k-1)+q2e(k-2),三、数字PID控制器的改进,(1)积分项的改进(2)微分项的改进(3)时间最优+PID控制(4)带死区的PID控制算法,(1)积分项的改进,积分分离 变速积分抗积分饱和 梯形积分 消除积分不灵敏区,积分的作用?,消除误差,提高精度,积分分离算法,现象:一般PID,当有较大的扰动或大幅度改变设定值时,由于短时间内出现大的偏差,加上系统本身具有的惯性和滞后,在积分的作用下,将引起系统过量的超调和长时间的波动。,积分的主要作用:在控制的后期消除稳态偏差,普通分离算法:大偏差时不积分,当 时,采用PID控制当 时,采用PD控制,积分分离值的确定原则,图3
8、 不同积分分离值下的系统响应曲线,变速积分算法,0,B,A+B,-B,-A-B,e(k),t,PID,变速积分,变速积分,PD,PD,抗积分饱和算法,现象:由于控制输出与被控量不是一一对应的,控制输出可能达到限幅值,持续的积分作用可能使输出进一步超限,此时系统处于开环状态,当需要控制量返回正常值时,无法及时“回头”,使控制品质变差。,因长时间出现偏差或偏差较大,计算出的控制量有可能溢出,或小于零。所谓溢出就是计算机运算得出的控制量u(k)超出D/A转换器所能表示的数值范围。,如果执行机构已到极限位置,仍然不能消除偏差时,由于积分作用,尽管计算PID差分方程式所得的运算结果继续增大或减小,但执行
9、机构已无相应的动作,这就称为积分饱和。,抗积分饱和算法:输出限幅,输出超限时不积分,当 时,采用PD控制当 时,采用PD控制其他情况,正常的PID控制,抗积分饱和与积分分离的对比,相同:某种状态下,切除积分作用。,不同:抗积分饱和根据最后的控制输出越限状态;积分分离根据偏差是否超出预设的分离值。,梯形积分,矩形积分,梯形积分,消除积分不灵敏区,积分不灵敏区产生的原因:由于计算机字长的限制,当运算结果小于字长所能表示的数的精度,计算机就作为“零”将此数丢掉。当计算机的运行字长较短,采样周期T也短,而积分时间Ti又较长时,ui(k)容易出现小于字长的精度而丢数,此积分作用消失,这就称为积分不灵敏区
10、。,(举例)某温度控制系统,温度量程为0至1275,A/D转换为8位,并采用8位字长定点运算。设KP=1,T=1S,TI=10s,e(k)=50,如果偏差e(k)50,则uI(k)1,计算机就作为“零”将此数丢掉,控制器就没有积分作用。只有当偏差达到50时,才会有积分作用。,为了消除积分不灵敏区,通常采用以下措施:增加A/D转换位数,加长运算字长,这样可以提高运算精度。当积分项uI(k)连续n次出现小于输出精度的情况时,不要把它们作为“零”舍掉,而是把它们一次次累加起来,直到累加值SI大于时,才输出SI,同时把累加单元清零。,(2)微分项的改进,PID调节器的微分作用对于克服系统的惯性、减少超
11、调、抑制振荡起着重要的作用。但是在数字PID调节器中,微分部分的调节作用并不是很明显,甚至没有调节作用。我们可以从离散化后的计算公式中分析出微分项的作用。,当e(k)为阶跃函数时,微分输出依次为KPTD/T,0,0,即微分项的输出仅在第一个周期起激励作用,对于时间常数较大的系统,其调节作用很小,不能达到超前控制误差的目的。而且在第一个周期微分作用太大,在短暂的输出时间内,执行器达不到应有的相应开度,会使输出失真,相反,对于频率较高的干扰,信号又比较敏感,容易引起控制过程振荡,降低调节品质,因此,我们需要对微分项进行改进。主要有以下两种方法:(1)不完全微分PID控制算法(2)微分先行PID控制
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机控制 系统 模拟 设计

链接地址:https://www.31ppt.com/p-6606441.html