结构化学chapter.ppt
《结构化学chapter.ppt》由会员分享,可在线阅读,更多相关《结构化学chapter.ppt(32页珍藏版)》请在三一办公上搜索。
1、2.4 多电子原子的结构,多电子原子由于电子间存在复杂的瞬时相互作用,其势能函数比较复杂,精确求解比较困难,一般采用近似解法。多电子原子的Schrdinger方程及其近似解 He原子体系的Schrdinger方程:,n个电子的原子,仍假定质心与核重合,Hamilton算符的通式为:,其中包含许多rij项,无法分离变量,不能精确求解,需设法求近似解。一种很粗略的方法就是忽略电子间的相互作用,即舍去第三项,设(1,2,n)=1(1)2(2)n(n),则可分离变量成为n个方程:ii(i)=Eii(i),按单电子法分别求解每个i和对应的Ei,i为单电子波函数,体系总能量:E=E1+E2+En,实际上电
2、子间的相互作用是不可忽略的。,单电子近似法:既不忽略电子间的相互作用,又用单电子波函数描述多电子原子中单个电子的运动状态,为此所作的近似称为单电子近似。常用的近似法有:,自洽场法(Hartree-Fock法):假定电子i处在原子核及其它(n-1)个电子的平均势场中运动,为计算平均势能,先引进一组已知的近似波函数求电子间相互作用的平均势能,使之成为只与ri有关的函数V(ri)。,V(ri)是由其它电子的波函数决定的,例如求V(r1)时,需用2,3,4,来计算;求V(r2)时,需用1,3,4,来计算。,有了i,解这一组方程得出一组新的i(1),用它计算新一轮V(1)(ri),再解出第二轮i(2),
3、如此循环,直至前一轮波函数和后一轮波函数很好地符合,即自洽为止。自洽场法提供了单电子波函数i(即原子轨道)的图像。把原子中任一电子的运动看成是在原子核及其它电子的平均势场中独立运动,犹如单电子体系那样。原子轨道能:与原子轨道i对应的能量Ei。自洽场法所得原子轨道能之和,不正好等于原子的总能量,应扣除多计算的电子间的互斥能。,中心力场法:将原子中其它电子对第i个电子的作用看成相当于i个电子在原子中心与之排斥。即只受到与径向有关的力场的作用。这样第i个电子的势能函数可写成:,此式在形式上和单电子原子的势能函数相似Z*称为有效核电荷。,屏蔽常数i的意义:除i电子外,其它电子对i电子的排斥作用,使核的
4、正电荷减小i。其值的大小可近似地由原子轨道能计算或按Slater法估算。,中心力场模型下多电子原子中第i个电子的单电子Schrdinger方程为:,nlm=Rnl(r)Ylm(,),解和方程时与势能项V(ri)无关,Ylm(,)的形式和单电子原子完全相同。与i对应的原子轨道能为:Ei=13.6(Z*)2/n2(eV),原子总能量近似等于各电子的原子轨道能Ei之和;原子中全部电子电离能之和等于各电子所在原子轨道能总和的负值。,屏蔽效应:核外某个电子i感受到核电荷的减少,使能级升高的效应。把电子看成客体,看它受其它电子的屏蔽影响。钻穿效应:电子i避开其余电子的屏蔽,使电子云钻到近核区而感受到较大核
5、电荷作用,使能级降低的效应。把电子看成主体,从它自身分布的特点来理解。,2.原子轨道能和电子结合能,屏蔽效应和钻穿效应都是电子间相互作用的结果,二者间有着密切的联系,都是根据单电子波函数和中心力场的近似模型提出来的,都是由于在多电子原子中,各个电子的量子数(n,l)不同,电子云分布不同,电子和电子之间、电子和核之间的相互作用不同,而引起原子轨道能和电子结合能发生变化的能量效应。能量效应与原子轨道的能级顺序:n相同l不同的轨道,能级次序为:ns,np,nd,nf。这是因为虽然s态主峰离核最远,但其小峰靠核最近,随核电荷的增加,小峰的Z*大而r小,钻穿效应起主导作用,小峰对轨道能级的降低影响较大;
6、n和l都不同的轨道,能级高低可根据屏蔽效应和钻穿效应作些估计,但不能准确判断。,电子结合能:在中性原子中,当其它电子均处在基态时,电子从指定的轨道电离时所需能量的负值。它反映了原子轨道能级的高低,又称原子轨道能级。电离能:气态原子失去一个电子成为一价气态正离子所需的最低能量,称为原子的第一电离能(I1):A(g)A+(g)+e,I1=E=E(A+)E(A);气态A失去一个电子成为二价气态正离子A2+所需的能量称为第二电离能(I2)等等。轨道冻结:假定中性原子失去一个电子后,剩下的原子轨道不因此而发生变化,原子轨道能近似等于这个轨道上电子的平均电离能的负值。由实验测得的电离能可求原子轨道能和电子
7、结合能:例如,He原子基态时,两电子均处在1s轨道上,I124.6eV,I254.4eV,则He原子1s原子轨道的电子结合能为24.6eV,He原子的1s原子轨道能为39.5eV。由屏蔽常数近似计算原子轨道能屏蔽常数的Slater估算法(适用于n14的轨道):将电子按内外次序分组:1s2s,2p3s,3p3d4s,4p4d4f5s,5p某一轨道上的电子不受它外层电子的屏蔽,0同一组内 0.35(1s组内 0.30)相邻内层组电子对外层电子的屏蔽,0.85(d和f轨道上电子的 1.00)更靠内各组的 1.00。,例如,C原子的电子组态为1s22s22p2,1s的 0.30,因而Z1s*=60.3
8、05.70,C原子的1s电子的原子轨道能为:E1s13.65.702442eV 2s电子的 20.8530.352.75,Z2s*62.753.25 C原子的2s(或2p)电子的原子轨道能为:E2s,2p13.63.252/2235.9eV 按此法,E2s和E2p相同,2s和2p上4个电子的原子轨道能之和为143.6eV,与C原子第一至第四电离能之和I1+I2+I3+I411.2624.3847.8964.49148.0eV的负值相近。同理1s上两电子的原子轨道能为884eV,与I5+I6392.1490.0882.1eV的负值接近。说明原子总能量近似等于各电子的原子轨道能之和。实际上多电子原
9、子的E2s和E2p是不同的,考虑s,p,d,f轨道的差异,徐光宪等改进了Slater法,得到的结果更好。一个电子对另一个电子既有屏蔽作用,又有互斥作用,当一个电子电离时,既摆脱了核的吸引,也把互斥作用带走了。由实验所得电离能可求屏蔽常数:如,I1=24.6E(He+)E(He),因He+是单电子原子,E(He+)13.622/1254.4eV,而E(He)213.6(2)2,所以 0.30。由 可近似估算原子中某一原子轨道的有效半径r*:r*=n2/Z*,C原子2p轨道的有效半径为:r*=2252.9/3.25=65pm.,电子结合能又称原子轨道能级,简称能级。可根据原子光谱等实验测定。电子结
10、合能和原子轨道能的关系:对于单电子原子,二者相同;对Li,Na,K等的最外层电子(单电子),二者也相同;在其它情况下,由于存在电子间互斥能,二者不同。,电子互斥能:价电子间相互排斥的作用能。J(d,d)J(d,s)J(s,s)以Sc原子为例,实验测得:E4sESc(3d14s2)ESc+(3d14s1)6.62eV E3dESc(3d14s2)ESc+(3d04s2)7.98eV ESc(3d24s1)ESc(3d14s2)2.03eV问题一:Sc的4s轨道能级高,基态电子组态为何是3d14s2,而不是3d24s1或3d34s0?问题二:为什么Sc(及其它过渡金属原子)电离时先失去4s电子而不
11、是3d电子?这是由于价电子间的电子互斥能J(d,d)11.78eV,J(d,s)8.38eV,J(s,s)6.60eV;当电子进入Sc3+(3d04s0)时,因3d能级低,先进入3d轨道;再有一个电子进入Sc2(3d14s0)时,因J(d,d)较大,电子填充在4s轨道上,成为Sc(3d14s1)。再有一个电子进入时,由于J(d,d)J(d,s)J(d,s)J(s,s),电子仍进入4s轨道。这就很好地回答了上述两个问题。电子填充次序应使体系总能量保持最低,而不能单纯按轨道能级高低的次序。基态原子的电子排布 基态原子核外电子排布遵循以下三个原则:Pauli不相容原理;能量最低原理;Hund规则:在
12、能级简并的轨道上,电子尽可能自旋平行地分占不同的轨道;全充满、半充满、全空的状态比较稳定,因为这时电子云分布近于球形。,电子组态:由n,l表示的电子排布方式。多电子原子核外电子的填充顺序:,1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s,4f,5d,6p,7s,5f,6d,7p,过渡元素在周期表中为何延迟出现?3d排在4s之后,4d在5s后,4f,5d在6s后,5f,6d在7s后。原子轨道能级的高低随原子序数而改变,甚至“轨道冻结”并不成立,同一原子,电子占据的原子轨道变化之后,各电子间的相互作用情况改变,各原子轨道的能级也会发生变化。核外电子组态排布示例:Fe(Z=2
13、6):Fe1s22s22p63s23p63d64s2。常用原子实加价电子层表示:FeAr3d64s2。表达式中n小的写在前面。电子在原子轨道中填充时,最外层的不规则现象:部分原因是由于d,f轨道全充满、半充满、全空或接近全满、半满、全空时更稳定所致。但仍有解释不了的。不规则填充示例:Cr(3d54s1),Cu(3d104s1),Nb(4d45s1),U(5f36d17s2),2.5 元素周期表与元素周期性质,1.元素周期表 元素周期表是化学史上的里程碑,1869年,Mendeleav发现。周期数、族数、主族、副族、s,p,d,f,ds区的划分和特点(自学)2.原子结构参数 原子的性质用原子结构
14、参数表示。包括:原子半径(r)、有效核电荷(Z*)、电离能(I)、电子亲和能(Y)、电负性()、化合价、电子结合能等。原子结构参数分为两类:一类与气态自由原子的性质关联,如I、Y、原子光谱线波长等,与别的原子无关,数值单一;另一类是用来表征化合物中原子性质的参数,如原子半径,因原子并没有明显的边界,原子半径在化合物中才有意义,且随化合物中原子所处环境不同而变。原子半径的数值具有统计平均的含义,原子半径包括:共价半径(单键、双键、三键)、离子半径、金属半径和范德华半径等等。3.原子的电离能 衡量一个原子(或离子)丢失电子的难易程度,非常明显地反映出元素性质的周期性。,(4)同一周期中,I1有些曲
15、折变化,如,Be,N,Ne都较相邻两元素为高,这是因为,Be(2s2,全满),比Li的I1高,B失去一个电子后为2s22p0(s全满,p全空),I1反而比Be低;N为2s22p3,I1高;O失去1个电子变为2s22p3,I1比N小;Ne为2s22p6。(5)I2总是大于I1,峰值向Z+1移动;碱金属的I2极大;碱土金属的I2极小。,由图可明显反映出各族元素的化学性质:(1)稀有气体的I1总是处于极大值(完满电子层),碱金属的I1处于极小值(原子实外仅一个电子),易形成一价正离子;碱土金属的I1比碱金属稍大,I2仍较小,所以易形成二价正离子。(2)除过渡金属外,同一周期元素的I1基本随Z增加而增
16、大(半径减小);同一族中随Z增加I1减小;因此周期表左下角金属性最强,右上角元素最稳定。(3)过渡金属的I1不规则地随Z增加,同一周期中,最外层ns2相同,核电荷加一,(n1)d轨道加一电子,所加电子大部分在ns以内,有效核电荷增加不多,易失去最外层的s电子。,4.电子亲和能,气态原子获得一个电子成为一价负离子所放出的能量称为电子亲和能(负值)。电子亲和能的绝对值一般约比电离能小一个数量级,测定的可靠性较差;Y值随原子半径减小而增大,但电子间的排斥力相应增大,所以同一周期和同一族内元素的Y值都没有单调变化的规律;5.电负性 电负性是用以量度原子对成键电子吸引能力相对大小的结构参数。分子的极性越
17、大,离子键成分越多,电负性也可看作是原子形成负离子倾向相对大小的量度。Pauling的电负性标度(p):以F的电负性为4.0作为相对标准,由一系列电负性数据拟合,得出经验方程:AB0.1021/2;AB表示 AB键中A原子和B原子的电负性差,表示AB键键能与AA键和BB键键能的几何平均值之差。例如,HF键的键能为565kJmol1,HH和FF键的键能分别为436和155 kJmol1,它们的几何平均值为(436155)1/2=260。305 kJmol1,则H的电负性为B 4.00.102(305)1/22.2Pauling的电负性标度是用两元素形成化合物时的生成焓(键能)的数值来计算的,是测
18、定电负性的依据。,Mulliken(穆立根)的电负性标度(M):M0.2(I1Y),I1和Y的单位需用eV,均取正值。例如,F的I117.4eV,Y的数值为3.399eV,M 4.16 Allred(阿尔雷特)和Rochow(罗昭)的电负性标度(AR):AR3590Z*/r2+0.744,r为共价半径(pm),Z*=Z,可按Slater法估算。例如,F:1s22s22p5,60.3520.853.8,r72pm,AR 4.34 Allen(阿伦)的光谱电负性标度(S):基态时自由原子价层电子的平均单电子能量,用下式计算主族元素电负性的绝对值:S(mp+ns)/(m+n)。m和n分别为p轨道和s
19、轨道上的电子数,p和s为价层p轨道和s轨道上电子的平均能量(电子结合能,由光谱数据获得)。上式算出的电负性以eV为单位,为与Pauling电负性标度拟合,需乘以(2.30/13.60)因子。例如,对于F,m5,n2,p17.4eV,s37.9eV,S3.93 周期表中电负性的特点:金属的电负性小,非金属的电负性大,2可作为金属和非金属的分界点;同周期从左到右电负性增加,同族从上到下电负性减小;电负性差别大离子键为主,电负性相近的非金属元素以共价键结合,金属元素以金属键结合,还有过渡性化学键,电负性是研究键型变异的重要参数;Ne的电负性最大(4.79),几乎不能形成化学键;Xe(2.58)比F和
20、O的电负性小,可形成氟化物和氧化物,Xe和C的电负性相近,可形成共价键。,6.相对论效应对元素周期性质的影响,相对论效应:光速的有限值与把光速看作无穷大时互相比较所产生的差异。物质的质量随运动速度而变:,相对论的稳定效应:重原子由于运动速度快,质量增大,轨道半径收缩而使能量降低的效应。按Bohr模型,H原子1s电子:mv2/r=e2/40r2,mvr=nh/2,则,mv=nh/2r v=e2/40r(2r/nh)e2/20hn,n=1,用原子单位,v=1au=2.187106m/s 只有光速的1/137,此时m为m0的1.00003倍,差别不大。对于原子序数为Z的原子,1s电子的平均速度为v=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 化学 chapter

链接地址:https://www.31ppt.com/p-6599118.html