空间向量及其加减运算(第一课时).ppt
《空间向量及其加减运算(第一课时).ppt》由会员分享,可在线阅读,更多相关《空间向量及其加减运算(第一课时).ppt(59页珍藏版)》请在三一办公上搜索。
1、空间向量及其加减运算,用字母 等或者用有向线段的起点与终点字母 表示,定义:,既有大小又有方向的量叫向量,几何表示法:,用有向线段表示;,字母表示法:,相等的向量:,长度相等且方向相同的向量,复习,2.平面向量的加减法与数乘运算,(1)向量的加法:,平行四边形法则,三角形法则,复习,(2)向量的减法,三角形法则,3.平面向量的加法运算律,加法交换律:,加法结合律:,复习,平面向量,概念,加法减法运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量的加法、减法运算,空间向量,具有大小和方向的量,加法交换律,加法结合律,加法交换律,加法:三角形法则或平
2、行四边形法则,减法:三角形法则,加法结合律,成立吗?,O,A,B,C,空间向量的加减法,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.,平面向量,概念,加法减法运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量的加法、减法运算,空间向量,具有大小和方向的量,加法交换律,加法结合律,加法交换律,加法:三角形法则或平行四边形法则,减法:三角形法则,加法结合律,成立吗?,O,A,B,C,O,A,B,C,加法结合律,(1)加法交换律:,(2)加
3、法结合律:,a,b,c,a+b+c,a,b,c,a+b+c,a+b,b+c,空间向量的加法、减法运算,对空间向量的加法、减法的说明,空间向量的运算就是平面向量运算的推广,两个向量相加的平行四边形法则在空间 仍然成立,空间向量的加法运算可以推广至若干个 向量相加,说明,(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:,推广,(2)首尾相接的若干向量构成一个封闭图形,则它们的和为零向量即:,推广,A,B,C,D,平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱,平行四边形ABCD平移向量 a 到 的轨迹所形成的几何体,叫做平行六面体记作ABCD,平行六面
4、体,例,例题,解:,例题,A,B,M,C,G,D,空间四边形ABCD中,M、G分别是BC、CD边的中点,化简:,练习,A,B,M,C,G,D,(2)原式,练习参考答案,3.1.2 空间向量的数乘运算,共线向量与共面向量,平面向量,概念,加法减法数乘运算,运算律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,O,B,结论:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.,一、空间向量数乘运算,1.实数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 向量 及其 加减 运算 第一 课时
链接地址:https://www.31ppt.com/p-6596390.html