直线与圆的位置关系切线长定理.ppt
《直线与圆的位置关系切线长定理.ppt》由会员分享,可在线阅读,更多相关《直线与圆的位置关系切线长定理.ppt(31页珍藏版)》请在三一办公上搜索。
1、直线与圆的位置关系切线长定理,上寨中学 申玉玲,问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?,P,P,P,问题2、经过圆外一点P,如何作已知O的切线?,O,。,A,B,P,思考:假设切线PA已作出,A为切点,则OAP=90,连接OP,可知A在怎样的圆上?,在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长,O,P,A,B,切线与切线长的区别与联系:,(1)切线是一条与圆相切的直线;,(2)切线长是指切线上某一点与切点间的线段的长。,若从O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。,PA=PB
2、,OPA=OPB,证明:PA,PB与O相切,点A,B是切点 OAPA,OBPB 即OAP=OBP=90 OA=OB,OP=OP RtAOPRtBOP(HL)PA=PB OPA=OPB,试用文字语言叙述你所发现的结论,PA、PB分别切O于A、B,PA=PB,OPA=OPB,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,切线长定理,几何语言:,反思:切线长定理为证明线段相等、角相等提 供了新的方法,我们学过的切线,常有 五个 性质:1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于过切点的半径;4、经过圆心垂直于切线的直线必过切点;5
3、、经过切点垂直于切线的直线必过圆心。,6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,六个,A,P,O,。,B,若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.,OP垂直平分AB,证明:PA,PB是O的切线,点A,B是切点 PA=PB OPA=OPB PAB是等腰三角形,PM为顶角的平分线 OP垂直平分AB,A,P,O,。,B,若延长PO交O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.,CA=CB,证明:PA,PB是O的切线,点A,B是切点 PA=PB OPA=OPB PC=PC PCA PCB AC=BC,C,
4、例.PA、PB是O的两条切线,A、B为切点,直线OP交于O于点D、E,交AB于C。,B,A,P,O,C,E,D,(1)写出图中所有的垂直关系,OAPA,OB PB,AB OP,(3)写出图中所有的全等三角形,AOP BOP,AOC BOC,ACP BCP,(4)写出图中所有的等腰三角形,ABP AOB,(5)若PA=4、PD=2,求半径OA,(2)写出图中与OAC相等的角,OAC=OBC=APC=BPC,。,P,B,A,O,(3)连结圆心和圆外一点,(2)连结两切点,(1)分别连结圆心和切点,反思:在解决有关圆的切线长的问题时,往往需要我们构建基本图形。,反思:在解决有关圆的切线长问题时,往往
5、需要我们构建基本图形。,1.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。,小 结:,PA、PB分别切O于A、B,PA=PB,OPA=OPB,OP垂直平分AB,切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。,2.圆的外切四边形的两组对边的和相等,o,o,o,外切圆圆心:三角形三边垂直平分线的交点。外切圆的半径:交点到三角形任意一个定点的距离。,三角形外接圆,三角形内切圆,内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。,A,A,B,B,C,C,分析题目已知:如图,AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 位置 关系 切线 定理
链接地址:https://www.31ppt.com/p-6594517.html