用样本的数字特征估计总体的数字特征(IV).ppt
《用样本的数字特征估计总体的数字特征(IV).ppt》由会员分享,可在线阅读,更多相关《用样本的数字特征估计总体的数字特征(IV).ppt(15页珍藏版)》请在三一办公上搜索。
1、第二章 统计,2.2.2 用样本的数字特征估计总体的数字特征(1),(一)众数、中位数、平均数,1.众数、中位数、平均数的概念,(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数,(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.,(3)平均数:一组数据的算术平均数,即,在初中我们学过众数、中位数和平均数的有关知识,这些数据都是反映样本信息的数字特征,它们又是如何定义的?,在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:,这组数据的平均数是:(1.5021.6031.901)1.69(m).,答:
2、17名运动员成绩的众数、中位数、平均数依次为1.75m,1.70 m,1.69 m.,分别求这些运动员成绩的众数、中位数与平均数,解:由表中数据可知:1.75出现了4次,出现的次数最多,所以这组数据的众数是1.75.,上表数据可看成是按从小到大的顺序排列的,其中最中间和数据为1.70,所以这组数据的中位数是1.70;,众数应该在面积最大的矩形内,所以猜测众数2 2.5范围之内,一般地,取最高矩形下端中点的横坐标2.25作为众数.,在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么?,众数:最高矩形下端中点的横坐标,图中矩形的面积代表什么?中位数
3、两边的图形面积有什么联系?如何用频率分布直方图估计中位数?,中位数两边的面积是相等的,都是0.5,从左至右各矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02,前四组之和为0.49,中位数在第五组。,中位数:2+0.5(0.01/0.25)=2.02,中位数:直方图面积平分线与横轴交点的横坐标,用频率分布直方图,你能估算样本的平均数吗?,0.250.04+0.750.08+1.250.15+1.750.22+2.250.25+2.750.14+3.250.06+3.750.04+4.250.02=2.02(t).,平均数等于各矩形面积与矩形
4、底边中点的横坐标积的和。,平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和,从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?,答:频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.,注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.,求众数、中位数、平均数有哪些不同的方法?,2.众数、中位数、平均数的方法:,(1)用样本数据计算;(2)用频率分布直方图估算。,根据众数、中位数、平均数各自的特点,你能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 样本 数字 特征 估计 总体 IV
链接地址:https://www.31ppt.com/p-6592255.html