现代控制工程-第5章能控性和能观性分析.ppt
《现代控制工程-第5章能控性和能观性分析.ppt》由会员分享,可在线阅读,更多相关《现代控制工程-第5章能控性和能观性分析.ppt(77页珍藏版)》请在三一办公上搜索。
1、第5章 线性系统的能控性和能观性分析,教材:王万良,现代控制工程,高等教育出版社,2011,2,能控性、能观性和稳定性一样,是控制系统的重要性质,是实现各种控制和状态估计的基础,在控制理论中起着核心的作用。本章首先介绍能控性、能观性的概念和能控性、能观性的判别准则。然后介绍状态空间模型的对角线标准型、能控标准型与能观标准型以及传递函数的几种标准型实现。最后简单介绍对偶原理和线性系统的规范分解。,第5章 线性系统的能控性和能观性分析,3,第5章 线性系统的能控性和能观性分析,5.1 能控性和能观性问题5.2 线性定常系统的能控性 5.3 线性定常系统的能观性5.4 状态空间模型的对角线标准型5.
2、5 能控标准型与能观标准型5.6 传递函数的几种标准型实现5.7 对偶原理,4,5.1 能控性和能观性问题,能控性、能观性的概念是卡尔曼(Kalman)在1960年首先提出的。系统的状态空间描述可用图5.1表示。,采用状态反馈可以实现各种控制,例如最优控制,如图5.2所示。,5,最优控制问题的任务是寻求控制作用,使系统达到预期状态。首要问题是系统的状态能否被控制?系统的能控性问题。,5.1 能控性和能观性问题,6,为了实现状态反馈控制,应该能够测量全部状态,但实际状态是难以测量的,往往需要从可以测量的输出中估计出来。状态估计的任务就是设计状态估计器,从输出中估计出状态,以实现状态反馈。首要问题
3、是从输出中能否估计出状态?系统的能观测性问题。,5.1 能控性和能观性问题,7,5.1 能控性和能观性问题,显然,u只能控制 而不能影响,我们称状态变量 是可控的,而 是不可控的。当系统所有状态可控,则称系统状态完全可控;如有一个状态变量是不可控的,则该系统是状态不可控的。,能控性:指外输入u(t)对系统状态变量x(t)和输出变量y(t)的支配能力,回答了u(t)能否使x(t)作任意转移的问题,8,5.1 能控性和能观性问题,能观测性:指由系统的输出y(t)识别状态变量x(t)的能力,它回答了状态变量能否由输出反映出来。,不能通过y(t)反映的状态为不能观状态,可以称 是可观测的,是不可观测的
4、。,9,5.1 能控性和能观性问题,下面用一个特殊的例子来粗略地说明能控性、能观性的概念。,显然,x2与i无关,与x1也无关,所以是不能控的。而y与x1无关,所以是不能观的。注意:上面只是粗略地说明。事实上,即使有关也不一定能控或者能观。,10,5.2.1 能控性的定义1.连续系统的能控性 定义:对于线性(定常、时变)系统,若对状态空间中的任意状态 和另一状态,存在一个有限的时间 和一个分段连续输入,能在 内使状态转移到,则称此状态是能控的,否则称为不能控的。,5.2 线性定常系统的能控性,若系统所有状态都是能控的,则称此系统是状态完全能控的,简称系统是能控的。,11,5.2.1 能控性的定义
5、,2.离散系统的能控性定义 在有限时间区间 内,若存在无约束的阶梯控制序列,能使系统从任意初态 转移到任意终态,则称该系统是状态完全能控的,简称是能控的。,在上述能控性定义中,把系统的初始状态和终端状态都取为状态空间中的任意非零有限点,这种定义方式虽然具有一般性,但不便于数学处理。不失一般性,可以把终端状态规定为状态空间中的原点。也可以把初始状态规定为状态空间中的原点,这种情况通常称为系统的能达性。对于线性定常系统,能控性和能达性是等价的。,12,5.2.2 能控性判别准则,能控性判别准则:线性定常(连续、离散)系统状态完全能控的充分必要条件是,由A,B构成的能控性判别矩阵满秩。即,例5.1
6、判别下列系统的能控性。,解:,所以,系统不(完全)能控。,13,5.2.2 能控性判别准则,例5.2 判别下列系统的能控性。,解:,所以,系统状态完全能控。,14,5.2.2 能控性判别准则,例5.3 判别下列系统的能控性。,解:,第二行与第三行成比例,,所以系统不完全能控。,15,5.2.2 能控性判别准则,例5.4 判别下列系统的能控性。,解:因为,所以,系统完全能控。,16,5.2.2 能控性判别准则,例5.5 判别下列系统的能控性。,解:,由于,的前三列组成的矩阵的行列式不为0,因此,所以系统完全能控。,17,5.2.3 能控性第二判别准则,定理:在任何非奇异线性变换下,线性定常(连续
7、、离散)状态方程的能控性保持不变。,证明:设线性定常连续系统的状态方程为,经非奇异线性变换,变换为,S的能控阵为,因为P是可逆即满秩的,所以,类似地,可以证明线性离散系统的情况。,18,5.2.3 能控性第二判别准则,能控性第二判别准则特征值互异的情况设线性定常系统,具有互异的特征值,则其状态完全能控的充分必要条件是:经非奇异线性变换后的对角线标准型:,阵不包含元素全为零的行。,19,5.2.3 能控性第二判别准则,上述定理在判别对角线标准型状态方程的能控性时尤为简单。例如,容易判别下面四个系统的能控性。,完全能控,不完全能控,完全能控,不完全能控,20,5.2.3 能控性第二判别准则,能控性
8、第二判别准则重特征值情况,若线性定常系统具有重特征值,且每一个重特征值对应一个特征向量,则系统状态完全能控的充分必要条件是:其经过非奇异变换后的约当标准型,中,每个约当小块,的最后一行对应的,阵的各行元素不全为零。,21,5.2.3 能控性第二判别准则,例如下面四个系统:,完全能控,不完全能控,完全能控,不完全能控,22,5.3 线性定常系统的能观性,5.3.1 能观性的定义,定义:对线性定常系统,如果对任意给定的输入 总存在有限观测时间,使得根据 期间的输出,能唯一地确定系统初始时刻的状态,则称状态 是能观测的或者能观的。若系统的每一个状态都是能观的,则称系统是状态完全能观的,或简称是能观的
9、。,23,5.3 线性定常系统的能观性,5.3.2 能观性判别准则,定常线性(连续、离散)系统,充分必要条件是:能观测判别矩阵,满秩,即,状态完全能观的,24,5.3 线性定常系统的能观性,例5.6 已知系统的动态方程为,分析系统的能观性。解,所以,系统是能观的。,25,5.3 线性定常系统的能观性,例5.7 已知系统的动态方程为,分析系统的能观性。,所以,系统是不可观的。,解:,26,5.3 线性定常系统的能观性,例5.8 已知系统的动态方程为,分析系统的能观性。解 由能观性判别准则,有,所以,系统是能观的。,27,5.3 线性定常系统的能观性,例5.9 已知系统的动态方程为,分析系统的能观
10、性。解 由能观性判别准则,所以,系统是不能观的。,28,5.3.3 能观性第二判别准则,能观性第二判别准则:设线性定常系统,中的A阵具有重特征值,且每一个重特征值只对应一个特征向量,则系统状态完全能观的充要条件是经非奇异线性变换后的约当标准型,中与每个约当块,首行相对应的那些列,其元素不全为零。,29,5.3.3 能观性第二判别准则,系统完全能观,系统不完全能观,系统完全能观,30,5.3.3 能观性第二判别准则,系统不完全能观,系统完全能观,系统不完全能观,31,5.4 状态空间模型的对角线标准型,这些内容在线性代数中已经作了充分的介绍,这里只归纳基本方法。读者也可以跳过这部分内容。5.4.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 控制工程 章能控性 能观性 分析
链接地址:https://www.31ppt.com/p-6590372.html