点、直线平面的投影.ppt
《点、直线平面的投影.ppt》由会员分享,可在线阅读,更多相关《点、直线平面的投影.ppt(86页珍藏版)》请在三一办公上搜索。
1、第一节 投影法的基本知识,第二节 点的投影,第三节 直线的投影,第四节 平面的投影,第五节 直线与平面、平面与平面的相对位置,第一章 点、直线、平面的投影,一、投影的概念 投影空间物体在光线的照射下,在地上或墙上产生的影子,这种现象叫做投影。投影法在投影面上作出物体投影的方法称为投影法。,1-1 投影法的基本知识,1、中心投影法:,全部投影线都 从一点投射出。,H,特性:投影大小与物体和投影面之间距离有关。,二、投影法的分类,投射中心,投射线,2、平行投影法:所有投影线都相互平行。,1)、正投影法:(主要学习此种投影方法),投射线互相平行且垂直于投影面,特性:投影大小与物体和 投影面之间距离无
2、关。,投射方向,2)、斜投影法:投影线倾斜于投影面,投射线互相平行但不垂直于投影面,特性:投影大小与物体和 投影面之间距离无关。,三、正投影法的主要特性 1、点的投影:,A,H,a,2、直线的投影:,直线的投影一般情况下仍为直线,在特殊情况下聚为一点。1)、直线平行于投影面,a,b,A,B,H,在该面上的投影ab反映空间直线AB的真实长度。即:ab=AB,2)、直线CD垂直于投影面在该面上的投影有积聚性,其投影为一点,H,C,D,c(d),3)直线EF倾斜于投影面 在该面上的投影长度变短,即:ef=EF cos,E,F,e,f,H,3、平面的投影,平面的投影一般仍是相类似的平面图形,在特殊情况
3、下积聚为直线。1)平面平行于投影面,A,B,C,a,b,c,H,投影abc反映空间平面ABC的真实形状。,2)、平面垂直于投影面,D,E,F,d,e,f,H,在投影面上的投影积聚为直线。,3)平面倾斜于投影面,K,L,M,K,l,m,H,投影klm面积变小。,四、正投影的基本性质:1、真实性 2、积聚性 3、类似性,一个视图不能完整地反映物体的空间形状,五、物体的三面投影图,1、三面投影图的形成,三投影面体系由三个相互垂直的投影面所组成,正立投影面简称正面。,水平投影面 简称水平面。,侧立投影面简称侧面。,两投影面的交线称为投影轴OX、OY、OZ。,V,H,W,X,Y,Z,O,2、物体在三投影
4、面体系中的投影,正面投影由前向后投影;水平面投影 由上向下投影;侧面投影由左向右投影。,3、三投影面的展开,V,H,W,O,X,YH,Z,YW,侧面W绕 OZ轴向右旋转90。,水平面H绕OX轴向下旋转90。,规定:正面V保持不动。,O,4、位置关系和投影关系:,5、方位关系,俯视图在主视图的下方左视图在主视图的右方主、俯视图长对正(等长)主、左视图高平齐(等高)俯、左视图宽相等(等宽),主视图反映物体的上下和左右俯视图反映物体的前后和左右左视图反映物体的前后和上下注:俯、左视图靠近主视图的一边,表示物体的后表面;远离主视图的一边,表示物体的前表面。,1-2 点的投影,一、点在两投影面体系中的投
5、影,过A作垂直于V、H面的投射线A a、Aa,分别与H面交于a,与V面交于a,a、a即为点A的两面投影。,实际作图时不画投影面边框。,ax,点的两面投影规律:,(1)、点的两面投影连线垂直于相应的投影轴,即 aaox;(2)、点的投影到投影轴的距离,等于该点到相应投影面的距离,即:aax=Aa aax=Aa,二、点在三投影面体系中的投影,规定:空间点A用大写字母表示,在H面的投影用a,在V面的投影用a,在W面的投影用a表示。,点的三面投影规律:(1)、点的投影连线垂直于投影轴。即:aaox,aaoz(2)、点的投影到投影轴的距离,等于该点的 坐标,也就是该点到相应投影面的距离。三、点的三面投影
6、与直角坐标的关系:将投影面体系当作空间直角坐标系,把V、H、W当作坐标面,投影轴ox、oy、oz当作坐标 轴,o 作为原点。点A的空间位置可以用直角坐标(x,y,z)来表示。,点A的x坐标值=oax=aay=aaz=Aa反映点A到W面的距离。Y坐标值=oay=aax=aaz=Aa反映点A 到V面的距离。Z坐标值=oaz=aax=aay=Aa反映点A到H面的距离。,a 由点A的x、y值确定,a由点A 的x、Z确定,a由点A的y、z值确定。,例1、已知点的坐标值为:A(20,10,15)和B(0,15,20)求它们的三面投影图。,解:(1)量取坐 标值;,a,a,a,b,b,b,(2)作点的 投影
7、。,例2、已知各点的两面投影,求作其第三投影,并判断点对投影面的相对位置。,a,b,c,点A的三个坐标值均不为0,A为一般位置。,点B的Z坐标为0,故点B为H面上的点。,点C的x、y坐标为0,故点C为z轴上的点。,四、两点的相对位置和重影点:,1、两点的相对位置 要在投影图上判断空间两点的相对位置,应根据这两点在每个的面投影关系和坐标差来确定。,例:由投影图判断A、B两点的空间位置。,(1)由A、B两点V、H面投影可确定点A在点B左方。,(2)由A、B的H、W面投影可确定A在B前方。,(3)由A、B的V、W面投影可确定A在B下方。,因此点A位于点B左、前、下方。,2、重影点,重影点空间两点在一
8、个面的投影重合于一点叫做重影点。,如图:C、D两点的水平投影证明影为一点。,c,(d),c,d,又因点C在点D的正上方,C点可见,D点被遮盖。,作图时不可见点加括号。,结论:如果两个点的某面投影重合时,则对该投影面的投影坐标值大者为可见,小者为不可见。,例:已知点D 的三面投影,点C在点D的正前方15mm,求作点C的三面投影,并判别其投影的可见性。,解:,由已知条件知:XC=XD ZC=ZD YC-YD=15mm点C、D在V面上的投影重影。,c,c,c,又YC YDC的V面投影为可见点,则D的V面投影为不可见点。,(),1、点A在V面上,故 YA=02、点B在X轴上,故ZB=YB=03、点C在
9、原点上,故 Zc=Yc=Xc=0,点A在点B的上方(ZAZB)点A在点B的右方(XAXB)点A在点B的前方(YAYB),点A在点B的正前方(XA=XBZA=ZB,YAYB)点A和点B称为V面上的重影点。,1-3 直线的投影,一、直线的投影:直线的投影一般为直线,可由直线上两点的同面投影连线确定。,例:已知直线AB端点坐标为 A(20,15,5),B(5,5,15)作AB的三面投影。,a,a,a,b,b,b,二、各种位置直线的投影特性,1、一般位置直线,直线的三面投影长度均小于实长,三面投影均倾斜于投影轴,但不反映空间直线对投影面倾角的大小。,2、投影面平行线,1)、水平线:平行于H面,对V、W
10、面倾斜,水平投影ab=AB,正面投影abOX,侧面投影abOYw,ab与OX、OYH的夹角、等于AB对V、W面的倾角。,2)、正平线:平行于V,对H、W倾斜,c,d,c,d,c,d,正面投影cd=CD,水平投影cdOX侧面投影cdOZ,cd与OX、OZ的夹角、等于CD对H、W面的倾角。,3)、侧平线:平行于W面,对V、H面倾斜,侧面投影ef=EF,水平投影efOYH,正面投影efOZ。,ef与OYW、OZ的夹角、等于EF对V、H面的倾角。,1、ab=AB=实长2、abOX轴,a b OZ轴3、=0、反映实际大小,1、ab=AB=实长2、ab OX轴,a b OYW轴3、=0、反映实际大小,1、
11、a b=AB=实长2、ab OZ轴,ab OYH轴3、=0、反映实际大小,投影面平行线的投影特性,1、直线在所平行的投影面上的投影反映直线的实际长度。,2、直线在另外两个投影面上的投影平行于相应的轴(所平行投影面上的坐标轴)。,3、投影面垂直线,1)、铅垂线:直线H面,V、W面。,水平投影积聚为一点。,ab=ab=AB,ab OX,ab OYW,2)、正垂线:直线V面,H、W面。,正面投影积聚为一点。,cd=cd=CD,cdOX,cdOZ,3)、侧垂线:直线W面,H、V面。,侧面投影积聚为一点。,ef=ef=EF,efOYH,efOZ。,1、V面投影积聚为一点。2、a b=ab=AB=实长3、
12、abOX轴,a b OZ 轴=90、=0,1、H面投影积聚为一点。2、a b=ab=AB=实长3、ab OX轴,a b OY W 轴=90、=0,1、w面投影积聚为一点。2、ab=ab=AB=实长3、abOYH轴,ab OZ 轴=90、=0,投影面垂直线的投影特性,1、直线在所垂直的投影面上的投影积聚为一点。,2、直线在另外两个投影面上的投影垂直于相应的轴(所垂直投影面上的坐标轴),且反映实际长度。,三、直线上的点,1、从属性:点在直线上,点的各面投影必定在该直线的同面投影上;反之,点的各面投影均在直线的同面投影上,则该 点必在此直线上。,k,k,k,2、定比性:,直线上的点分割直线之比,在投
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 平面 投影
链接地址:https://www.31ppt.com/p-6588672.html