椭圆的简单几何性质LW.ppt
《椭圆的简单几何性质LW.ppt》由会员分享,可在线阅读,更多相关《椭圆的简单几何性质LW.ppt(45页珍藏版)》请在三一办公上搜索。
1、椭圆的简单几何性质(1),复习:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2|)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,关于x轴对称,关于y轴对称,关于原点对称,椭圆对称性,观察:椭圆,一、椭圆的对称性,把(X)换成(-X),方程不变,说明椭圆关于()轴对称;把(Y)换成(-Y),方程不变,说明椭圆关于()轴对称;把(X)换成(-X),(Y)换成(-Y),方程还是不变,说明椭圆关于()对称;,中心:椭圆的对称中心叫做椭圆的中心。,所以,坐标轴是椭圆的对称轴,原点是椭圆的对称中
2、心。,Y,X,原点,二、椭圆的顶点,令 x=0,得 y=?,说明椭圆与 y轴的交点(),令 y=0,得 x=?,说明椭圆与 x轴的交点()。,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。,0,b,a,0,*长轴、短轴:线段A1A2、B1B2分别叫做椭圆的长轴和短轴。,a、b分别叫做椭圆的长半轴长和短半轴长。,-axa,-byb 知 椭圆落在x=a,y=b组成的矩形中,三、范围:,例1,求椭圆 16 x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点坐标,解:把已知方程化成标准方程,椭圆的长轴长是:,离心率:,焦点坐标是:,四个顶点坐标是:,椭圆的短轴长是:,2a=10,2b=8
3、,练习:椭圆的简单画法,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,例2 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程,分析:题目没有指出焦点的位置,要考虑两种位置,椭圆的标准方程为:;,椭圆的标准方程为:;,解:(1)当 为长轴端点时,,(2)当 为短轴端点时,,,,综上所述,椭圆的标准方程是 或,问题2:圆的形状都是相同的,而椭圆却有些比较“扁”,有些比较“圆”,用什么样的量来刻画椭圆“扁”的程度呢?,四、椭圆的离心率,离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0e1,1)e 越接近 1,c 就
4、越接近 a,从而 b就越小,椭圆就越扁2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆,3e与a,b的关系:,复习练习1.已知椭圆方程为 则,它的长轴长是:;短轴长是:;焦距是:;离心率等于:;焦点坐标是:;顶点坐标是:;外切矩形的面积等于:。,2,小试牛刀,M,d,F,H,x,y,o,例2:(选自优化设计)分别求适合下列条件的椭圆的标准方程:(1)长轴长是6,离心率是(2)焦点在x轴上,且一个焦点与短轴的两个端点的连线互相垂直,焦距为6.,例3:(选自优化设计),小结一:基本元素,1基本量:a、b、c、e、(共四个量),2基本点:顶点、焦点、中心(共七个点),3基本线:对称轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 简单 几何 性质 LW
链接地址:https://www.31ppt.com/p-6584838.html