有限长单位脉冲响应(FIR)滤波器的设计方法-第三节.ppt
《有限长单位脉冲响应(FIR)滤波器的设计方法-第三节.ppt》由会员分享,可在线阅读,更多相关《有限长单位脉冲响应(FIR)滤波器的设计方法-第三节.ppt(23页珍藏版)》请在三一办公上搜索。
1、4.3 频率采样法,工程上,常给定频域上的技术指标,所以采用频域设计更直接。一、基本思想 使所设计的FIR数字滤波器的频率特性在某些离散频率点上的值准确地等于所需滤波器在这些频率点处的值,在其它频率处的特性则有较好的逼近。,内插公式,关键点:求h(n)、H(z)及其频率响应 约束条件对H(k)的取值影响,二.设计方法,1)从频域出发,对理想频响加以等间隔采样,并以此作为实际FIR的频率特性的离散样本,确定2)通过IDFT,求有限长序列h(n),为3)利用N个频域的离散样本H(k),同样求出H(z)及其频响。,三、约束条件,为了设计线性相位的FIR滤波器,采样值 H(k)要满足一定的约束条件。前
2、已指出,具有线性相位的FIR滤波器,其单位脉冲响应h(n)是实序列,且满足,由此得到的幅频和相频特性,就是对H(k)的约束。(表4.1)。例如,要设计第一类线性相位FIR滤波器,即N为奇数,h(n)偶对称,则幅度函数H()应具有偶对称性:,令 则 必须满足偶对称性:而 必须取为:,同样,若要设计第二种线性相位FIR滤波器,N为偶数,h(n)偶对称,由于幅度特性是奇对称的,,因此,Hk 也必须满足奇对称性:相位关系同上,其它两种线性相位FIR数字滤波器的设计,同样也要满足幅度与相位的约束条件。,四、逼近误差,由 或 H(z)。由上述设计过程得到的 与 的逼近程度,以及 与H(k)的关系?由,令,
3、则,单位圆上的频响为:,这是一个内插公式。,式中 为内插函数令 则,内插公式表明:在每个采样点上,逼近误差为零,频响 严格地与理想频响的采样值 H(k)相等;,在采样点之间,频响由各采样点的内插函数延伸迭加而形成,因而有一定的逼近误差,误差大小与理想频率响应的曲线形状有关,理想特性平滑,则误差小;反之,误差大。在理想频率响应的不连续点附近,会产生肩峰和波纹。N增大,则采样点变密,逼近误差减小。,图 频率采样的响应,例3:设计一个FIR数字 LP 滤波器,其理想特性为 采样点数 N=33,要求线性相位。解:根据P.142的表4.1,能设计低通线性相位数字滤波器的只有1、2两种,因N为奇数,所以只
4、能选择第一种。即 h(n)=h(N-1-n),幅频特性关于偶对称,也即 HK 偶对称。利用 HK 的对称性,求2区间的频响采样值。,根据指标要求,在02内有33个取样点,所以第k点对应频率为 而截止频率 0.5位于 之间,所以,k=08时,取样值为1;根据对称性,故 k=2532时,取样值也为1,因 k=33 为下一周期,所以0区间有9个值为 1的采样点,2区间有8个值为 1 的采样点,因此:,将 代入内插公式,求H(ej):,考虑到8k25时 Hk=0,而其它k时,Hk=1,令 k=33-n,则,相应地频率响应见图4.12(b),从图上可以看出,其过渡带宽为一个频率采样间隔 2/33,而最小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有限 单位 脉冲响应 FIR 滤波器 设计 方法 三节
链接地址:https://www.31ppt.com/p-6583251.html