数据仓库技术(不讲).ppt
《数据仓库技术(不讲).ppt》由会员分享,可在线阅读,更多相关《数据仓库技术(不讲).ppt(45页珍藏版)》请在三一办公上搜索。
1、第12章 数据仓库技术,12.1 从数据库到数据仓库12.2 数据仓库基本概念12.3 数据仓库中的数据组织12.4 数据仓库系统的体系结构12.5 企业的体系化数据环境12.6创建数据仓库12.7 小结,12.1 从数据库到数据仓库,数据库管理系统作为数据管理的最新手段,成功地用于事务处理领域尽管数据库在事务处理方面的应用获得了巨大的成功。但它对分析处理的支持一直不能令人满意,尤其是当以事务处理为主的OLTP应用与以分析处理为主的DSS应用共存于同一个数据库管理系统中时,这两种类型的处理发生了明显的冲突。,12.1 从数据库到数据仓库,事务处理环境不适宜DSS应用的原因概括起来主要有以下四个
2、方面:(1)事务处理和分析处理的性能特性不同(2)数据集成问题(3)历史数据问题(4)数据的综合问题 以上这些问题表明在事务型环境中直接构建分析型应用是一种失败的尝试。数据仓库本质上是对这些存在问题的回答。,12.2 数据仓库基本概念,分析处理和事务处理具有极不相同的性质,因而两者对数据也有着不同的要求。数据仓库概念的创始人W.H.Inmon在其Building Data Warehouse一书中,列出了操作型数据与分析型数据之间的区别,如表12.1所示。,12.2 数据仓库基本概念,表12.1 操作型数据和分析型数据的区别,12.2 数据仓库基本概念,基于上述操作型数据和分析型数据之间的区别
3、,我们可以给出数据仓库定义:数据仓库是一个用以更好地支持企业或组织的决策分析处理的、面向主题的、集成的、不可更新的、随时间不断变化的数据集合。数据仓库本质上和数据库一样是长期储存在计算机内、有组织、可共享的数据集合。,12.2 数据仓库基本概念,数据仓库和数据库主要的区别是数据仓库中的数据具有以下四个基本特征:数据仓库的数据是面向主题的。数据仓库的数据是集成的。数据仓库的数据是不可更新的。数据仓库的数据是随时间不断变化的。,12.2 数据仓库基本概念,12.2.2 主题与面向主题 从逻辑意义上讲,主题是企业中某一宏观分析领域所涉及的分析对象。主题是一个抽象的概念,是在较高层次上将企业信息系统中
4、的数据综合、归类并进行分析利用的抽象。所谓较高层次是相对面向应用的数据组织方式而言的,是指按照主题进行数据组织的方式具有更高的数据抽象级别。,12.2 数据仓库基本概念,我们用一个例子来详细说明。一家采用“会员制”经营方式的商场,按业务已建立起销售、采购、库存管理以及人事管理子系统。按照其业务处理要求,建立了各子系统的数据库模式:采购子系统:订单(订单号,供应商号,总金额,日期)订单细则(订单号,商品号,类别,单价,数量)供应商(供应商号,供应商名,地址,电话),12.2 数据仓库基本概念,销售子系统:顾客(顾客号,姓名,性别,年龄,文化程度,地址,电话)销售(员工号,顾客号,商品号,数量,单
5、价,日期)人事管理子系统:员工(员工号,姓名,性别,年龄,文化程度,部门号)部门(部门号,部门名称,部门主管,电话),12.2 数据仓库基本概念,库存管理子系统:领料单(领料单号,领料人,商品号,数量,日期)进料单(进料单号,订单号,进料人,收料人,日期)库存(商品号,库房号,库存量,日期)库房(库房号,仓库管理员,地点,库存商品描述)应该分为两个步骤来组织数据:抽取主题以及确定每个主题所应包含的数据内容。,12.2 数据仓库基本概念,抽取主题 应该是按照分析的要求来确定主题。1.在OLTP数据库中进行数据组织时要考虑如何更好地记录下每一笔采购业务的情况,我们用“订单”、“订单细则”以及“供应
6、商”三个数据库模式来描述一笔采购业务所涉及的数据内容,这就是面向应用来进行数据组织的方式;,12.2 数据仓库基本概念,2.在数据仓库中,对于商品采购的分析活动主要是要了解各供应商的情况,显然“供应商”是采购分析的对象。我们并不需要象“订单”和“订单细则”这样的数据库模式,因为它们包含的是纯操作型的数据;但是仅仅只用OLTP数据库的“供应商”中的数据又是不够的,因而要重新组织“供应商”这个主题。,12.2 数据仓库基本概念,确定主题的数据内容 概括各种分析对象,我们抽取了商场的供应商、商品、顾客三个主题。然后确定每个主题所应包含的数据内容。以“商品”主题为例,应该包括两个方面的内容:第一,商品
7、固有信息,如商品名称,商品类别以及型号、颜色等描述信息;第二,商品的流动信息,如某商品采购信息、商品销售信息及商品库存信息等。,12.2 数据仓库基本概念,比照商场原有数据库的数据模式,我们可以看到:首先,在从面向应用到面向主题的转变过程中,丢弃了与分析活动关系不大的信息。其次,在原有的数据库模式中,关于商品的信息分散在各子系统中。,12.2 数据仓库基本概念,面向主题的数据组织方式是根据分析要求将数据组织成一个完备的分析领域,即主题域。主题域应该具有:1.独立性,它必须具有独立内涵。2.完备性,就是要求对任何一个对商品的分析处理要求,我们应该能在“商品”这一主题内找到该分析处理所要求的内容。
8、,12.2 数据仓库基本概念,主题是一个在较高层次上对数据的抽象,这使得面向主题的数据组织可以独立于数据的处理逻辑,因而可以在这种数据环境上方便地开发新的分析型应用;同时这种独立性也是建设企业全局数据库所要求的,所以面向主题不仅是适用于分析型数据环境的数据组织方式,同时也是适用于建设企业全局数据库的组织。,12.2 数据仓库基本概念,12.2.3 数据仓库的数据是集成的 数据仓库的数据是从原有的分散的数据库数据中抽取来的。在表11-1中我们已经看到,操作型数据与DSS分析型数据之间差别甚大。第一,数据仓库的每一个主题所对应的源数据在原有的各分散数据库中有许多重复和不一致的地方,且来源于不同的联
9、机系统的数据都和不同的应用逻辑捆绑在一起;第二,数据仓库中的综合数据不能从原有的数据库管理系统直接得到;因此在数据进入数据仓库之前,必然要经过转换、统一与综合。,12.2 数据仓库基本概念,12.2.4 数据仓库的数据是不可更新的 数据仓库的数据反映的是一段相当长时间内的历史数据,是不同时点的数据库快照的集合,以及基于这些快照进行统计、综合和重组的导出数据,而不是联机处理的数据。OLTP数据库中的数据经过抽取(Extracting)、清洗(Cleaning)、转换(Transformation)后装载(Loading)到数据仓库中,一旦数据存放到数据仓库中,数据就不再更新了。,12.2 数据仓
10、库基本概念,12.2.5 数据仓库数据是随时间不断变化的 数据仓库的用户在进行分析处理时是不进行数据更新操作的。但并不是说,从数据仓库数据整体来看就一成不变了。恰恰相反,数据仓库是随时间不断变化的。,12.2 数据仓库基本概念,数据仓库的数据随时间不断变化是数据仓库数据的第四个特征。这一特征表现在以下三方面:第一,数据仓库随时间变化将不断增加新的数据内容。第二,数据仓库随时间变化不断删去旧的数据内容。第三,数据仓库中包含有大量的综合数据,这些综合数据中很多跟时间有关。,12.3 数据仓库中的数据组织,数据仓库的数据组织结构如图12.1所示。数据仓库中的数据分为多个级别:早期细节级、当前细节级、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据仓库 技术
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6578342.html