数字电子技术课件第二章.ppt
《数字电子技术课件第二章.ppt》由会员分享,可在线阅读,更多相关《数字电子技术课件第二章.ppt(85页珍藏版)》请在三一办公上搜索。
1、概述,第 2 章逻辑代数基础,逻辑函数及其表示方法,逻辑代数的基本定律和规则,逻辑函数的代数化简法,逻辑函数的卡诺图化简法,本章小结,主要要求:,理解逻辑值 1 和 0 的含义。,2.1 概 述,理解逻辑体制的含义。,一、逻辑代数,逻辑代数中的 1 和 0 不表示数量大小,仅表示两种相反的状态。,注意,例如:开关闭合为 1 晶体管导通为 1 电位高为 1 断开为 0 截止为 0 低为 0,主要要求:,掌握逻辑代数的常用运算。,理解并初步掌握逻辑函数的建立和表示的方法。,2.2 逻辑函数及其表示方法,掌握真值表、逻辑式和逻辑图的特点及其相互转换的方法。,一、基本逻辑函数及运算,1.与逻辑,决定某
2、一事件的所有条件都具备时,该事件才发生,逻辑表达式 Y=A B 或 Y=AB,与门(AND gate),若有 0 出 0;若全 1 出 1,开关 A 或 B 闭合或两者都闭合时,灯 Y 才亮。,2.或逻辑,决定某一事件的诸条件中,只要有一个或一个以上具备时,该事件就发生。,若有 1 出 1若全 0 出 0,逻辑表达式 Y=A+B,或门(OR gate),1,3.非逻辑,决定某一事件的条件满足时,事件不发生;反之事件发生。,1,非门(NOT gate)又称“反相器”,二、常用复合逻辑运算,由基本逻辑运算组合而成,若相异出 1若相同出 0,若相同出 1若相异出 0,注意:异或和同或互为反函数,即,
3、例 试对应输入信号波形分别画出下图各电路的输出波形。,解:,Y1,0 1 1 0 0 1 1 0,0 0 1 1 0 0 1 1,Y2,Y3,三、逻辑符号对照,四、逻辑函数及其表示方法,逻辑函数描述了某种逻辑关系。常采用真值表、逻辑函数式、卡诺图和逻辑图等表示。,1.真值表,列出输入变量的各种取值组合及其对应输出逻辑函数值的表格称真值表。,0,0,4 个输入变量有 24=16 种取值组合。,2.逻辑函数式,表示输出函数和输入变量逻辑关系的 表达式。又称逻辑表达式,简称逻辑式。,逻辑函数式一般根据真值表、卡诺图或逻辑图写出。,(1)找出函数值为 1 的项。(2)将这些项中输入变量取值为 1 的用
4、原变量代替,取值为 0 的用反变量代替,则得到一系列与项。(3)将这些与项相加即得逻辑式。,3.逻辑图,运算次序为先非后与再或,因此用三级电路实现之。,由逻辑符号及相应连线构成的电路图。,例如 画 的逻辑图,例 图示为控制楼道照明的开关电路。两个单刀双掷开关 A 和 B 分别安装在楼上和楼下。上楼之前,在楼下开灯,上楼后关灯;反之,下楼之前,在楼上开灯,下楼后关灯。试画出控制功能与之相同的逻辑电路。,(1)分析逻辑问题,建立逻辑函数的真值表,(2)根据真值表写出逻辑式,解:,方法:找出输入变量和输出函数,对它们的取值作出逻辑规定,然后根据逻辑关系列出真值表。,设开关 A、B合向左侧时为 0 状
5、态,合向右侧时为 1 状态;Y 表示灯,灯亮时为 1 状态,灯灭时为 0 状态。则可列出真值表为,(3)画逻辑图,与或表达式(可用 2 个非门、2 个与门和 1 个或门实现),异或非表达式(可用 1 个异或门和 1 个非门实现),=B,2.3逻辑代数的基本定律和规则,主要要求:,掌握逻辑代数的基本公式和基本定律。,了解逻辑代数的重要规则。,一、基本公式,二、基本定律,普通代数没有!,例 证明等式 A+BC=(A+B)(A+C),解:,真值表法,公式法,右式=(A+B)(A+C),用分配律展开,=AA,+AC,+BA,+BC,=A+AC+AB+BC,=A(1+C+B)+BC,=A 1+BC,=A
6、+BC,(二)逻辑代数的特殊定理,吸收律,A+AB=A,A+AB=A(1+B)=A,推广公式:,思考:(1)若已知 A+B=A+C,则 B=C 吗?,(2)若已知 AB=AC,则 B=C 吗?,推广公式:,摩根定律,(又称反演律),三、重要规则,(一)代入规则,A A A,利用代入规则能扩展基本定律的应用。,将逻辑等式两边的某一变量均用同一个逻辑函数替代,等式仍然成立。,变换时注意:(1)不能改变原来的运算顺序。(2)反变量换成原变量只对单个变量有效,而长非 号保持不变。,可见,求逻辑函数的反函数有两种方法:利用反演规则或摩根定律。,原运算次序为,(二)反演规则,对任一个逻辑函数式 Y,将“”
7、换成“+”,“+”换成“”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到原逻辑函数的反函数。,(三)对偶规则,对任一个逻辑函数式 Y,将“”换成“+”,“+”换成“”,“0”换成“1”,“1”换成“0”,则得到原逻辑函数式的对偶式 Y。,对偶规则:两个函数式相等,则它们的对偶式也相等。,应用对偶规则可将基本公式和定律扩展。,主要要求:,了解逻辑函数式的常见形式及其相互转换。,了解逻辑函数的代数化简法。,2.4 逻辑函数的代数化简法,理解最简与-或式和最简与非式的标准。,逻辑式有多种形式,采用何种形式视需要而定。各种形式间可以相互变换。,一、逻辑函数式的几种常见
8、形式和变换,例如,与或表达式,或与表达式,与非-与非表达式,或非-或非表达式,与或非表达式,转换方法举例,二、逻辑函数式化简的意义与标准,化简意义,使逻辑式最简,以便设计出最简的逻辑电路,从而节省元器件、优化生产工艺、降低成本和提高系统可靠性。,不同形式逻辑式有不同的最简式,一般先求取最简与-或式,然后通过变换得到所需最简式。,最简与-或式标准,(1)乘积项(即与项)的个数最少(2)每个乘积项中的变量数最少,用与门个数最少与门的输入端数最少,最简与非式标准,(1)非号个数最少(2)每个非号中的变量数最少,用与非门个数最少与非门的输入端数最少,三、代数化简法,运用逻辑代数的基本定律和公式对逻辑式
9、进行化简。,并项法,运用,将两项合并为一项,并消去一个变量。,吸收法,运用A+AB=A 和,消去多余的与项。,消去法,运用吸收律,消去多余因子。,配项法,通过乘 或加入零项 进行配项,然后再化简。,综合灵活运用上述方法,例 化简逻辑式,解:,应用,例 化简逻辑式,解:,应用,应用 AB,例 化简逻辑式,解:,应用,用摩根定律,主要要求:,掌握最小项的概念与编号方法,了解其主要性质。,掌握用卡诺图表示和化简逻辑函数的方法。,理解卡诺图的意义和构成原则。,掌握无关项的含义及其在卡诺图化简法中的应用。,2.5逻辑函数的卡诺图化简法,代数化简法,优点:对变量个数没有限制。缺点:需技巧,不易判断是否最简
10、式。,卡诺图化简法,优点:简单、直观,有一定的步骤和方法 易判断结果是否最简。缺点:适合变量个数较少的情况。一般用于四变量以下函数的化简。,一、代数化简法与卡诺图化简法的特点,卡诺图是最小项按一定规则排列成的方格图。,n 个变量有 2n 种组合,可对应写出 2n 个乘积项,这些乘积项均具有下列特点:包含全部变量,且每个变量在该乘积项中(以原变量或反变量)只出现一次。这样的乘积项称为这 n 个变量的最小项,也称为 n 变量逻辑函数的最小项。,1.最小项的定义和编号,(一)最小项的概念与性质,二、最小项与卡诺图,如何编号?,如何根据输入变量组合写出相应最小项?,例如,3 变量逻辑函数的最小项有 2
11、3=8 个,将输入变量取值为 1 的代以原变量,取值为 0 的代以反变量,则得相应最小项。,简记符号,例如,2.最小项的基本性质,(2)不同的最小项,使其值为 1 的那组变量取值也不同。,(3)对于变量的任一组取值,任意两个最小项的乘积为 0。,(4)对于变量的任一组取值,全体最小项的和为 1。,3.相邻最小项,两个最小项中只有一个变量互为反变量,其余变量均相同,称为相邻最小项,简称相邻项。,相邻最小项重要特点:,两个相邻最小项相加可合并为一项,消去互反变量,化简为相同变量相与。,(二)最小项的卡诺图表示,将 n 变量的 2n 个最小项用 2n 个小方格表示,并且使相邻最小项在几何位置上也相邻
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 电子技术 课件 第二
链接地址:https://www.31ppt.com/p-6576978.html