数字信号处理西安电子.ppt
《数字信号处理西安电子.ppt》由会员分享,可在线阅读,更多相关《数字信号处理西安电子.ppt(67页珍藏版)》请在三一办公上搜索。
1、第1章时域离散信号和时域离散系统,1.1学习要点与重要公式1.2解线性卷积的方法1.3例题1.4习题与上机题解答,1.1学习要点与重要公式本章内容是全书的基础,因此学好本章是极其重要的。数字信号和数字系统与模拟信号和模拟系统不同,尤其是处理方法上有本质的区别。模拟系统用许多模拟器件实现,数字系统则通过运算方法实现。,学习要点(1)信号:模拟信号、时域离散信号、数字信号三者之间的区别;常用的时域离散信号;如何判断信号是周期性的,其周期如何计算;序列的运算;(2)系统:什么是系统的线性、时不变性以及因果性、稳定性;线性时不变系统输入和输出之间的关系;求解线性卷积的图解法(列表法)、解析法;线性卷积
2、的运算律以及意义;时域离散系统的输入输出描述法:线性常系数差分方程以及递推解法。,1.1.2 重要公式(1),这是一个线性卷积公式,注意公式中是在之间对m求和。如果公式中x(n)和h(n)分别是系统的输入和单位脉冲响应,y(n)是系统输出,则该式说明系统的输入、输出和单位脉冲响应之间服从线性卷积关系。,(2)x(n)=x(n)*(n)该式说明任何序列与(n)的线性卷积等于原序列。x(nn0)=x(n)*(nn0),1.2解线性卷积的方法解线性卷积是数字信号处理中的重要运算。解线性卷积有三种方法,即图解法(列表法)、解析法和在计算机上用MATLAB语言求解。它们各有特点。图解法(列表法)适合于简
3、单情况,短序列的线性卷积,因此考试中常用,不容易得到封闭解。解析法适合于用公式表示序列的线性卷积,得到的是封闭解,考试中会出现简单情况的解析法求解。解析法求解过程中,关键问题是确定求和限,求和限可以借助于画图确定。第三种方法适合于用计算机求解一些复杂的较难的线性卷积,实验中常用。,解线性卷积也可用Z变换法,以及离散傅里叶变换求解,这是后面几章的内容。,例已知离散信号x(n)如图1.3.4(a)所示,试求y(n)=x(2n)*x(n),并绘出y(n)的波形。(选自西安交通大学2001年攻读硕士学位研究生入学考试试题)解:这也是一个计算线性卷积的题目,只不过要先求出x(2n)。解该题适合用列表法(
4、图解法)。x(2n)=1,1,1,0.5y(n)=x(2n)*x(n)=1,2,3,3,3,3,2.75,2,1,0.25绘出y(n)的波形如图1.3.4(b)所示。,1.3例题,图,1.4习题与上机题解答1.用单位脉冲序列(n)及其加权和表示题1图所示的序列。,题1图,解:x(n)=(n+4)+2(n+2)(n+1)+2(n)+(n1)+2(n2)+4(n3)+0.5(n4)+2(n6)2 给定信号:2n+54n160n40 其它(1)画出x(n)序列的波形,标上各序列值;(2)试用延迟的单位脉冲序列及其加权和表示x(n)序列;,(x(n)=,(3)令x1(n)=2x(n2),试画出x1(n
5、)波形;(4)令x2(n)=2x(n+2),试画出x2(n)波形;(5)令x3(n)=x(2n),试画出x3(n)波形。解:(1)x(n)序列的波形如题2解图(一)所示。(2)x(n)=3(n+4)(n+3)+(n+2)+3(n+1)+6(n)+6(n1)+6(n2)+6(n3)+6(n4),(3)x1(n)的波形是x(n)的波形右移2位,再乘以2,画出图形如题2解图(二)所示。(4)x2(n)的波形是x(n)的波形左移2位,再乘以2,画出图形如题2解图(三)所示。(5)画x3(n)时,先画x(n)的波形(即将x(n)的波形以纵轴为中心翻转180),然后再右移2位,x3(n)波形如题2解图(四
6、)所示。,题2解图(一),题2解图(二),题2解图(三),题2解图(四),3 判断下面的序列是否是周期的;若是周期的,确定其周期。,(1),(2),解:(1)因为=,所以,这是有理数,因此是周期序列,周期T=14。(2)因为=,所以=16,这是无理数,因此是非周期序列。,4 对题1图给出的x(n)要求:(1)画出x(n)的波形;(2)计算xe(n)=x(n)+x(n),并画出xe(n)波形;(3)计算xo(n)=x(n)x(n),并画出xo(n)波形;(4)令x1(n)=xe(n)+xo(n),将x1(n)与x(n)进行比较,你能得到什么结论?,解:(1)x(n)的波形如题4解图(一)所示。(
7、2)将x(n)与x(n)的波形对应相加,再除以2,得到xe(n)。毫无疑问,这是一个偶对称序列。xe(n)的波形如题4解图(二)所示。(3)画出xo(n)的波形如题4解图(三)所示。,题4解图(一),题4解图(二),题4解图(三),(4)很容易证明:x(n)=x1(n)=xe(n)+xo(n)上面等式说明实序列可以分解成偶对称序列和奇对称序列。偶对称序列可以用题中(2)的公式计算,奇对称序列可以用题中(3)的公式计算。5 设系统分别用下面的差分方程描述,x(n)与y(n)分别表示系统输入和输出,判断系统是否是线性非时变的。(1)y(n)=x(n)+2x(n1)+3x(n2)(2)y(n)=2x
8、(n)+3(3)y(n)=x(nn0)n0为整常数(4)y(n)=x(n),(5)y(n)=x2(n)(6)y(n)=x(n2)(7)y(n)=(8)y(n)=x(n)sin(n)解:(1)令输入为x(nn0)输出为 y(n)=x(nn0)+2x(nn01)+3x(nn02)y(nn0)=x(nn0)+2x(nn01)+3(nn02)=y(n),故该系统是非时变系统。因为 y(n)=Tax1(n)+bx2(n)=ax1(n)+bx2(n)+2ax1(n1)+bx2(n1)+3ax1(n2)+bx2(n2)Tax1(n)=ax1(n)+2ax1(n1)+3ax1(n2)Tbx2(n)=bx2(n
9、)+2bx2(n1)+3bx2(n2)所以 Tax1(n)+bx2(n)=aTx1(n)+bTx2(n)故该系统是线性系统。,(2)令输入为x(nn0)输出为y(n)=2x(nn0)+3y(nn0)=2x(nn0)+3=y(n)故该系统是非时变的。由于Tax1(n)+bx2(n)=2ax1(n)+2bx2(n)+3Tx1(n)=2x1(n)+3Tx2(n)=2x2(n)+3Tax1(n)+bx2(n)aTx1(n)+bTx2(n)故该系统是非线性系统。,(3)这是一个延时器,延时器是线性非时变系统,下面证明。令输入为x(nn1)输出为y(n)=x(nn1n0)y(nn1)=x(nn1n0)=y
10、(n)故延时器是非时变系统。由于Tax1(n)+bx2(n)=ax1(nn0)+bx2(nn0)=aTx1(n)+bTx2(n)故延时器是线性系统。,(4)y(n)=x(n)令输入为x(nn0)输出为y(n)=x(n+n0)y(nn0)=x(n+n0)=y(n)因此系统是线性系统。由于Tax1(n)+bx2(n)=ax1(n)+bx2(n)=aTx1(n)+bTx2(n)因此系统是非时变系统。,(5)y(n)=x2(n)令输入为 x(nn0)输出为y(n)=x2(nn0)y(nn0)=x2(nn0)=y(n)故系统是非时变系统。由于 Tax1(n)+bx2(n)=ax1(n)+bx2(n)2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 西安 电子
链接地址:https://www.31ppt.com/p-6576831.html