固体物理(中科大PPT).ppt
《固体物理(中科大PPT).ppt》由会员分享,可在线阅读,更多相关《固体物理(中科大PPT).ppt(62页珍藏版)》请在三一办公上搜索。
1、第六章 能带理论,能带论是目前研究固体中的电子状态,说明固体性质最重要的理论基础。它的出现是量子力学与量子统计在固体中的应用的最直接、最重要的结果。能带论成功地解决了Sommerfeld自由电子论处理金属问题时所遗留下来的许多问题,并为其后固体物理学的发展奠定了基础。能带论的基本出发点是认为固体中的电子不再是完全被束缚在某个原子周围,而是可以在整个固体中运动的,称之为共有化电子。但电子在运动过程中并也不像自由电子那样,完全不受任何力的作用,电子在运动过程中受到晶格原子势场的作用。,能带论的两个基本假设:BornOppenheimer绝热近似:所有原子核都周期性 地静止排列在其格点位置上,因而忽
2、略了电子与声子 的碰撞。HatreeFock平均场近似:忽略电子与电子间的相互 作用,用平均场代替电子与电子间的相互作用。即假 设每个电子所处的势场完全相同,电子的势能只与该 电子的位置有关,而与其他电子的位置无关。,由于以上两个基本假设,每个电子都处在完全相同的严格周期性势场中运动,因此每个电子的运动都可以单独考虑,称为单电子近似。所以,能带论是单电子近似的理论。用这种方法求出的电子能量状态将不再是分立的能级,而是由能量的允带和禁带相间组成的能带,所以这种理论称为能带论。,6.1 Bloch定理,一、周期场模型,考虑一理想完整晶体,所有的原子实都周期性地静止排列在其平衡位置上,每一个电子都处
3、在除其自身外其他电子的平均势场和原子实的周期场中运动,这样的模型称为周期场模型。,二、Bloch定理,在周期场中,描述电子运动的Schrdinger方程为,其中,U(r)=U(r+Rl)为周期性势场,Rl=l1a1+l2a2+l3a3为格矢,方程的解为:,这里,uk(r)=uk(r+Rl)是以格矢Rl为周期的周期函数。这个结果称为Bloch定理。,Bloch函数,证明:由于势场的周期性反映了晶格的平移对称性,可定义一个平移算符T,使得对于任意函数f(r)有,这里,a,1,2,3是晶格的三个基矢。,而,因为f(r)是任意函数,所以,TT T T=0,即T和T可对易。,又,因为f(r)是任意函数,
4、所以,T与H也可对易,即:T HH T 0根据量子力学可知,T和H有共同本征态。设(r)为其共同本征态,有,其中是平移算符T 的本征值。为了确定平移算符的本征值,引入周期性边界条件。设晶体为一平行六面体,其棱边沿三个基矢方向,N1,N2和N3分别是沿a1,a2和a3方向的原胞数,即晶体的总原胞数为NN1N2N3。,(设为非简并),周期性边界条件:,而,所以,引入矢量,这里b1,b2和b3为倒格子基矢,于是有,定义一个新函数:,这表明uk(r)是以格矢Rl为周期的周期函数。,证毕,二、几点讨论,1.关于布里渊区,波矢量k是对应于平移算符本征值的量子数,其物理意义表示不同原胞间电子波函数的位相变化
5、。,如,1反映的是沿a1方向,相邻两个原胞中周期对应的两点之间电子波函数的位相变化。不同的波矢量k表示原胞,间的位相差不同,即描述晶体中电子不同的运动状态。但是,如果两个波矢量k和k相差一个倒格矢Gn,可以证明,这两个波矢所对应的平移算符本征值相同。,对于k:,对于k k+Gn:,1,2,3,这表明,这两个波矢量k和k kGn所描述的电子在晶体中的运动状态相同。因此,为了使k和平移算符的本征值一一对应,k必须限制在一定范围内,使之既能概括所有不同的的取值,同时又没有两个波矢k相差一个倒格矢Gn。与讨论晶格振动的情况相似,通常将k取在由各个倒格矢的垂直平分面所围成的包含原点在内的最小封闭体积,即
6、简约区或第一布里渊区中。,若将k限制在简约区中取值,则称为简约波矢,若k在整个k空间中取值,则称为广延波矢。由于h1,h2和h3为整数,所以,k的取值不连续,在k空间中,k的取值构成一个空间点阵,称为态空间点阵。每一个量子态k在k空间中所占的体积为,在k空间中,波矢k的分布密度为,在简约区中,波矢k的取值总数为,2.Bloch函数的性质,Bloch函数,行进波因子 表明在晶体中运动的电子已不再局域于某个原子周围,而是可以在整个晶体中运动的,这种电子称为共有化电子。它的运动具有类似行进平面波的形式。那么,周期函数 的作用则是对这个波的振幅进行调制,使它从一个原胞到下一个原胞作周期性振荡,但这并不
7、影响态函数具有行进波的特性。,晶体中电子:,自由电子:,孤立原子:,可以看出,在晶体中运动电子的波函数介于自由电子与孤立原子之间,是两者的组合。如果晶体中电子的运动完全自由,则;若电子完全被束缚在某个原子周围,则。但实际上晶体中的电子既不是完全自由的,也不是完全被束缚在某个原子周围,因此,其波函数就具有 的形式。周期函数 的性质 就反映了电子与晶格相互作用的强弱。,可以认为,Bloch函数中,行进波因子 描述晶体中电子的共有化运动,即电子可以在整个晶体中运动;而周期函数因子 则描述电子的原子内运动,取决于原子内电子的势场。从能量的角度看,如果电子只有原子内运动(孤立原子情况),电子的能量取分立
8、的能级;若电子只有共有化运动(自由电子情况),电子的能量连续取值。由于晶体中电子的运动介于自由电子与孤立原子之间,既有共有化运动也有原子内运动,因此,电子的能量取值就表现为由能量的允带和禁带相间组成的能带结构。,需要指出的是,在固体物理中,能带论是从周期性势场中推导出来的,这是由于人们对固体性质的研究首先是从晶态固体开始的。而周期性势场的引入也使问题得以简化,从而使理论研究工作容易进行。所以,晶态固体一直是固体物理的主要研究对象。然而,周期性势场并不是电子具有能带结构的必要条件,现已证实,在非晶固体中,电子同样有能带结构。电子能带的形成是由于当原子与原子结合成固体时,原子之间存在相互作用的结果
9、,而并不取决于原子聚集在一起是晶态还是非晶态,即原子的排列是否具有平移对称性并不是形成能带的必要条件。,6.2 一维周期场中电子运动的近自由电子近似,一、近自由电子近似,在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多,这样,电子的运动几乎是自由的。因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰。,二、运动方程与微扰计算,Schrdinger方程:,周期性势场:,a为晶格常数,作Fourier展开:,其中,势能平均值,根据近自由电子模型,Un为微小量。,电子势能为实数,U(x)=U*(x),得 Un*=U-n。,1.非简并微
10、扰,这里,零级近似,微扰项,分别对电子能量E(k)和波函数(k)展开,将以上各展开式代入Schrdinger方程中,得,零级近似方程:,能量本征值:,相应归一化波函数:,正交归一性:,一级微扰方程:,令,代入上式,两边同左乘 并积分得,当k=k时,,当k k时,,由于一级微扰能量Ek(1)0,所以还需用二级微扰方程来求出二级微扰能量,方法同上。,二级微扰能量:,这里,于是,求得电子的能量为,电子波函数为,其中,容易证明uk(x)uk(x+a),是以a为周期的周期函数。可见,将势能随位置变化的部分当作微扰而求出的近似波函数的确满足Bloch定理。这种波函数由两部分组,成:第一部分是波数为k的行进
11、平面波,第二部分是该平面波受周期场的影响而产生的散射波。,因子,是波数为kk+2n/a的散射波的振幅。,在一般情况下,由各原子产生的散射波的位相各不相同(kk),因而彼此相互抵消,周期场对行进平面波的影响不大,散射波中各成分的振幅均较小,可以用微扰法处理。但是,如果由相邻原子所产生的散射波(即反射波)成分有相同的位相,如行进平面波的波长2/k正好满足条件2an 时,相邻两原子的反射波就会有相同的位相,它们将相互加强,从而使行进的平面波受到很大干涉。这时,周期场的影响就不能当作微扰了,当,时,,即,散射波中,这种成分的振幅变得无限大,一级修正项,太大,微扰不适用了。由上式可求得,或,这实际上是B
12、ragg反射条件2asinn 在正入射情况(sin1)的结果。,2.简并微扰,这正是布里渊区边界方程。也就是说,在布里渊区边界上,这时,这两个态的能量相等,为简并态。必须用简并微扰来处理。可以认为,和,互为行进波和反射波,因此零级近似的波函数是这两个波的线性组合。实际上,在k和k接近布里渊区边界时,即,时,散射波已经相当强了,因此,零级近似的波函数也必须写成,代入Schrdinger方程,得,由于,上式分别左乘k(0)*或k(0)*,并积分得,解得,这里,方程组有非零解的条件,即久期方程为,(1),这表示k和k离布里渊区边界还较远,因而k态和k态的能量还有较大的差别,这时将上式作Taylor展
13、开得:,对应于Ek(0)Ek(0)的情况,上式的结果与前面所讨论的非简并微扰计算的结果相似,只不过当行进波为k态时,在所产生的散射波中只保留了k态的影响;而当行进波为k态时,只保留了k态的影响。即只考虑k和k在微扰中的相互影响,而将影响小的其他散射波忽略不计了。影响的结果是使原来能量较高的k态能量升高,而能量,较低的k态的能量降低,即微扰的结果使k态和k态的能量差进一步加大。,(2),这表示k和k很接近布里渊区边界的情况,将E展开得,其中 为在布里渊区边界处自由电子的动能。,以上的结果表明,两个相互影响的态k和k,微扰后的能量分别为E和E,当 0时,k态的能量比k态高,微扰后使k态的能量升高,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 固体 物理 中科大 PPT

链接地址:https://www.31ppt.com/p-6557982.html