义务教育数学课程标准解读之目标篇.ppt
《义务教育数学课程标准解读之目标篇.ppt》由会员分享,可在线阅读,更多相关《义务教育数学课程标准解读之目标篇.ppt(86页珍藏版)》请在三一办公上搜索。
1、义务教育数学课程标准(2011版)解读之课程目标篇,2012.6,主要内容,“课标”对“课程目标”表述的思路义务教育数学课程的总目标 义务教育数学课程的具体目标 义务教育数学课程的学段目标,“课标”对“课程目标”表述的思路,关键词:“总目标”、“具体目标”、“学段目标”先总体,后具体,再到学段的细节,逐渐展开,希望使读者层层深入地阅读,既能够提纲携领,又能够多角度地、全面深入地理解并掌握“课程目标”。数学课程的具体目标按照知识技能、数学思考、问题解决、情感态度这四个方面展开,它们也是基础教育课程改革纲要(试行)(下面简称为纲要)中“知识与技能”、“过程与方法”、“情感态度与价值观”三维目标在数
2、学课程中的具体体现。,教育部门的领导、数学教材的编写者、数学教师都可以从“课程目标”的表述中总体地、全面地、精炼地了解:义务教育阶段数学课程设置的目的是什么;数学教学活动有哪些教育意义;数学课堂应当是怎样的;数学学习将使学生有什么收获。“课标”是就义务教育阶段的数学课程制定的课程目标,所以在符合纲要中三维目标的同时,还要结合数学学科的特点,结合义务教育阶段学生的特点,把上述三维目标具体化。综上:“课标”中的课程目标是一个具有层次、有结构的目标体系。,“课标”对“课程目标”表述的思路,义务教育数学课程的总目标,义务教育数学课程的总目标,标准20011版中三条总目标分别对应获得“四基”,增强能力,
3、培养科学态度。获得四基:增强能力:体现在让学生经历整个问题解决的全过程。科学态度:价值,兴趣,信心,习惯。,一、获得“四基”,1.因为培养创新精神的需要:一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。其中,创新意识和创新能力的形成,不仅仅需要必要的知识和技能的积累,更需要思想方法、活动经验的积累。也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。”,“双基”为什么要发展为“四基”?,一、获得“四基”,“双基”为什么要发展为“四基”?2
4、.因为“双基”仅仅涉及上述三维目标中的一个目标“知识与技能”。新增加的两条则还涉及三维目标中的另外两个目标“过程与方法”和“情感态度与价值观”。3.因为某些教师片面地理解“双基”,往往在实施中“以本为本”,见物不见人;而教学必须以人为本,人的因素第一,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念。4.因为仅有“双基”还难以培养创新性人才,“双基”是培养创新性人才的一个基础,但创新性人才不能仅靠熟练掌握已有的知识和技能来培养,思维训练和积累经验等也十分重要,所以新增加了两条。,(一)获得数学的基础知识和基本技能,关键词:与时俱进 走出“10亿件衬衫换1架波音”的尴尬
5、(缺乏创新)旧双基:数学的基本概念、基本公式、基本运算、基本性质、基本法则、基本程式、基本定理、基本作图、基本推理、基本表述、基本方法、基本操作、基本技巧,等等。新双基:对于过去数学“双基”的某些内容,如繁杂的计算、细枝末节的证明技巧等,需要有所删减;而对于估算、算法、数感、符号感、收集和处理数据、概率初步、统计初步、数学建模初步等,又要有所增加。(知识爆炸时代、信息时代),(二)获得数学的基本思想,数学思想是数学科学发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓。数学思想的内涵十分丰富,也有学者通俗地把“数学思想”说成“将具体的数学知识都忘掉以后剩下的东西”作为知识的数
6、学出校门不到两年就忘了,唯有深深铭记在头脑中的数学的精神、数学的思想、研究的方法和着眼点等,这些随时随地地发生作用,使人终身受益。(米山国藏)例如:从数学角度看问题的出发点,把客观事物简化和量化的思想,周到地思考问题和严密地进行推理,以及建立数学模型的思想,合理地运筹帷幄,等等。,概念界定,关键词:数学基本思想、基本方法、基本思想方法“课标”在这里的措词为“数学的基本思想”,而不是“数学的基本思想方法”,是因为后者可能更多地让人联想到“方法”,如换元法、代入法、配方法,层次就降低了,且冲淡了“思想”。这里在“思想”的前面加了“基本”二字,一方面强调其重要,另一方面也希望控制其数量基本思想不要太
7、多了。说“强调其重要”,是因为“数学思想”可以有许多,并且是具有层次的,而“数学的基本思想”则是其中带有基本重要性的一些思想,处于较高的层次;其他的数学思想都可以由这些“数学的基本思想”演变出来,派生出来,发展出来,处于相对较低的层次。,观点:方法是体现相应思想的手段,思想则是对应方法的精髓实质。,数学基本思想的主要特征,高度的概括性、相对的内隐性、显著的层次性(四层)第一层次:是与某些特殊问题联系在一起的方法,人们通常称之为解题术。如:解二元一次方程时常用的加减消元法、代入消元法等。第二层次:是指解决一类问题时可以采用的共同方法,人们通常称之为解题通法。如:数学证明中常用的数学归纳法、反证法
8、等。第三层次:是人们对数学知识和方法的本质性认识,即数学思想。“课标”中所说的“数学的基本思想”主要指:数学抽象的思想、数学推理的思想、数学建模的思想。第四层次:是数学观念,这是数学思想的最高境界,是一种认识客观世界的哲学思想。虽然从形式上看,数学观念几乎无迹可寻,但它却在不知不觉中支配着每一个个体的数学活动。通常所说的用数学的眼观看待周围世界,用数学方法处理周围事物,就是着眼于数学观念而言的。这也是数学教育的最高境界。,数学基本思想的教育价值,与数学概念和原理这些关于客观世界数形特征的显性知识相比,数学思想方法具有一定的永恒性和普遍的实用性,它是学生形成思维能力、分析和解决问题能力以及创新精
9、神和实践能力的重要基础。重视数学思想方法有利于学生更好的理解和掌握相关的数学内容。(知其然知其所以然)重视数学思想方法有助于学生形成良好的认知结构。(分段学习统计知识,形成数据分析观念)重视数学思想方法有助于真正提高学生的数学素养并使他们终身受益。(教会学生数学地思考问题),小学数学中蕴涵的数学基本思想,数学抽象的思想:分类的思想,集合的思想,数形结合的思想,“变中有不变”的思想,符号表示的思想,对称的思想,对应的思想,有限与无限的思想,等等。数学推理的思想:归纳的思想,演绎的思想,公理化思想,转换化归的思想,联想类比的思想,逐步逼近的思想,代换的思想,特殊与一般的思想,等等。数学建模的思想:
10、简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,抽样统计的思想,等等。,如何获得数学基本思想,关键词:渗透数学思想是数学教学的核心和精髓,教师在讲授数学方法时应该努力反映和体现并渗透数学思想,让学生了解和体会数学思想,提高学生的数学素养。案例三角形内角和 三类三角形(分类)特殊一般(转化)猜想验证(动手操作)归纳,渗透的三层含义,数学思想方法要以数学知识为载体,通过数学知识得以“显化”,通过数学概念的形成和建立过程、数学规律的归纳和总结过程、数学问题的分析和解决过程来体现;强调对数学思想方法的体验和领悟,也就是要通过潜移默化的手段使数学思想方法悄然扎根于学生的头脑之中,
11、逐步成长为一种意识、观念和素质,并在后续的学习、工作、生活中随时地发挥作用,使他们终生受益;要注意渗透行为的阶段性和长期性的特点。不同的数学思想可能隐含于同一知识点,同一数学思想也可以在不同的知识点中发挥作用。学生理解和形成数学思想需要一个长期的、层次化的过程,需要在这个过程中逐步丰富认识、积累经验、加深感悟,千万不可一蹴而就。比如说抽象思想:具体的物体数字的认识用字母表示数,渗透数学思想要注意的几个方面,提高渗透数学思想的自觉性(熟悉知识并蕴涵的数学思想)如分数的再认识 单位“1”从一个物体自然过渡到一些物体看做单位“!”通过高质量的思维活动凸显思想的价值数学是思维的科学,数学教学最根本也是
12、最重要的任务就是要让学生学会思维。组织高质量的思维活动,引导学生多角度、多层次、富有个性的思考问题,是渗透数学思想的重要途径。注意阶段性,逐步提高领悟水平,(三)获得数学的基本活动经验,“活动经验”与“活动”密不可分,所说的“活动”,当然要有“动”,手动、口动和脑动。它们既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的活动,也包括课程教学中特意设计的活动。活动经验”还与“经验”密不可分,当然就与“人”密不可分。学生本人要把在活动中的经历、体会总结上升为“经验”。这既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索
13、出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中互相比较得到的经验。特别关键的是,这些“经验”必须转化和建构为属于学生本人的东西,才可以认为学生获得了“活动经验”。,观点:数学活动经验是学生经历数学活动的过程与结果的有机统一体。,关于数学活动,数学活动的教育意义在于,学生主体通过亲身经历数学活动过程,能够获得具有个性特征的感性认识、情感体验、以及数学意识、数学能力和数学素养。应该注意的是,所说的“活动”都必须有明确的数学内涵和数学目的,体现数学的本质,才能称得上是“数学活动”,它们是数学教学的有机组成部分。教师的课堂讲授、学生的课堂学习,是最主要的“
14、数学活动”,这种讲授和学习,应该是渐进式的、启发式的、探究式的、互动式的。此外,还有其他形式的“数学活动”,例如学生的自主学习,调查研究,小组讨论,探讨分析、参观实践,以及作业练习和操作计算工具,等等。,数学活动经验的特征,主体性:基于数学学习的主体,属于特定的学习者自己,因此带有明显的主体性特征。实践性:数学活动经验离不开数学活动,只有亲身经历、体验数学活动,学习者才能形成数学活动经验。(如学习小数让学生联系购物时的商品价格等,解释其表示的意义。)内隐性:数学活动经验介于缄默知识和显性知识之间,是无形的,因此具有内隐性。个体性:与个体的认知水平、情感状态以及个体对已有经验素材加工的深度与广度
15、直接相关,也与个体参与活动的程度密切相联。动态性:与形式化的知识相比,缺乏明晰的结构体系,既没有明确的逻辑点,也没有明显的逻辑结构,是隐性的和个体化的,也是动态的。,数学活动经验的分类,行为操作的经验案例:动手折纸或画对称图形探究的经验案例:三角形内角和或三边关系(内角和180度,两边之和大于第三边)数学思维的经验案例:解决问题的策略(求平均数问题)问题:六(1)班有10名同学,男同学平均身高142cm,女同学平均身高141cm,问该10名同学的平均身高是多少cm?发现和提出问题、分析和解决问题的经验案例:提供素材小组合作(等量代换),如何获得数学活动经验,设计、组织好每一个数学活动,促进学生
16、积极主动地从“经历”走向“经验”是帮助学生获得系统的数学活动经验的最有效的办法。1.通过数学活动,让学生经历数学的发生、发展过程;2.通过数学活动,让学生经历数学对接生活的过程,激活已有经验并使之转化为数学活动经验;3.通过数学活动,让学生经历数学活动的反思过程,及时提升、丰富数学活动经验。,(四)“四基”是一个有机的整体,“四基”不是四个事物简单的叠加或混合,而是一个有机的整体,是互相联系、互相促进的。基础知识和基本技能是数学教学的主要载体,需要花费较多的课堂时间;数学思想则是数学教学的精髓,是统领课堂教学的主线;数学活动是不可或缺的教学形式。课堂上要力争:1.在课堂时间的安排上就应该有意识
17、地给“数学思想”的教学预留适当的时间,但是“数学思想”的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛,应该避免“两层皮”,避免生硬牵强,避免长篇大论。2.在课堂“数学活动”的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间;其他形式的“数学活动”也应安排适当的时间。3.在教学评价上也应该给“数学思想”和“数学活动”以适当的位置和空间。,二、增强能力,关键词:体会 联系 思维 思考 能力体会数学知识之间、数学与其他学科之间、数学与生活之间的联系;运用数学的思维方式进行思考;增强发现和提出问题
18、的能力、分析和解决问题的能力。,(一)体会与数学相关的各种联系,世界上的一切事物都是互相联系的。“数学课程标准”虽然着重阐述对数学的学习,但是学生不应该就事论事地学习数学,不应该孤立地学习数学,不应该局限地学习数学,而应该在普遍联系中学习数学。观点:注重知识的系统化学习,帮助学生有意识的学会把知识由点到线,再由线到面形成知识网络。加强课程内容的综合性,淡化学科界限。数学来源于实践,又应用于实践,与实践的关系非常密切。,(二)运用数学的思维方式进行思考,关键词:“授人以鱼”不如“授人以渔”渗透“数学是思维的体操”。数学课程在培养学生逻辑推理和理性思维方面的作用,是其他课程难以替代的。教数学一定要
19、教思维,但是不能空洞地、形式地教思维,而要以数学知识为载体渗透思维。学数学也一定要学思维,学生学会了“数学方式的理性思维”,将受用无穷。案例:抽屉原理,(三)增强发现和提出问题的能力、分析和解决问题的能力,关键词:问题“发现问题”是经过多方面、多角度的数学思维,从表面上看来没有关系的一些现象中找到数量或者空间方面的某些联系,或者找到数量或者空间方面的某些矛盾,并把这些联系或者矛盾提炼出来。“提出问题”是在已经发现问题的基础上,把找到的联系或者矛盾用数学语言、数学符号集中地以“问题”的形态表述出来。“分析问题和解决问题”是在“已知”和“未知”都是清楚的,需要的是利用已有的概念、性质、定理、公式、
20、模型,采用恰当的思路和方法得到问题的答案的过程。要培养学生的创新意识和创新精神,“发现问题和提出问题”的能力和意识是必须的。,(三)增强发现和提出问题的能力、分析和解决问题的能力,要培养学生从数学角度出发的“问题意识”。为此,在数学教学中教师就要努力创设适当的情境,让学生用数学的眼光来看待和分析这些情境,经常采用探究式的教学方法,引导学生发现问题和提出问题,也引导学生分析问题和解决问题,从而培养学生的相应能力。这里,其实与前面阐述的“思考”能力是一致的。善于思维、思考才能够发现问题和提出问题,善于思维、思考才能够分析问题和解决问题。学生在思考中发现问题直至解决问题,还可以获得一些数学活动经验。
21、案例:三角形三边的关系,案例:小数和自然数一样也是无限大的吗?,生1:我觉得是无限大的。师:说说你的理由?能举个例子吗?生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是一直可以再多,谁也不知道到底有多大。生3:我觉得自然数有多大,小数就有多大。因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。生4:我补充,1亿加上0.1就比1亿大了。生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。(大家都表示同意),老师们记住两句话:,启发学生思考的最好的办法是教师与学生一起思考。(张丹)要鼓励学生
22、”从头到尾“的思考问题。(史宁中)案例:比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。学生就没有“从头思考”,为什么要用周长去除以直径?这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能想到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。,三、培养科学态度,了解数学的价值,提高学习数学的兴趣,增强学好数学的信心。养成良好的学习习惯,具有初步的创新意识和科学态度。,(一)了解数学的价值,提高学习
23、数学的兴趣,增强学好数学的信心,关键词:价值 兴趣 信心为了让学生了解数学的价值,在数学教学中就要注意说明数学在日常生活中的应用,数学在工程技术中的应用,数学在其他学科中的应用,数学在实践中的应用。除了应用价值外,还有数学的教育价值,是指学生在学会数学知识作为今后应用的工具的同时,还学到了从数学角度看问题的出发点,学到了数学方式的理性思维,思考更有条理,表达更加清晰,提高了自己的数学素养。数学教学在培养学生的抽象能力、推理能力和创新能力上,发挥着独特的作用。学生了解了数学的价值,并在学习实践中体会到数学的价值,就自然会提高学习数学的兴趣。兴趣是最好的老师,有兴趣的学习活动,一定会大大提高学生学
24、习数学的效率。不惜一切保护好孩子学习数学的信心,帮助学生克服困难,学习内容不能过难或者是过易,要符合学生的认知规律,考试、评价的方式和方法,这也是影响学生学习信心的关键环节。多正面表扬喝鼓励,少批评和挖苦。,(二)养成良好的学习习惯,具有初步的创新意识和科学态度,良好的学习习惯是从小养成的,所以学习习惯必须从一年级小学生抓起。良好的学习习惯可以包括:认真对待学习,勤奋刻苦,积极参与探究,勇于坚持真理和纠正错误,及时完成作业,有饱满的学习热情,有强烈的求知欲,不畏惧困难,愿意提问、咨询、反思和质疑,乐于与人交流、合作,会合理安排时间等。创新意识是创新能力的基础,对于义务教育阶段的学生,首先需要关
25、注他们创新意识的培养。创新意识也需要从小培养。例如学会发现问题和提出问题,例如不盲从书本和教师,有自己的独立见解,愿意讨论,敢于质疑。让学生具有良好的科学态度,也是数学教学贯穿始终的目标。“良好的科学态度”有许多内涵,例如坚持真理,修正错误,严谨周密,实事求是,等等。,总之,“课标”在表述数学课程“总目标”时给出的这样一段综述,言简意赅,结合数学教学的特点,分别从获得“四基”、增强能力、培养科学态度的角度,用明确区分又相互联系的三句话,不但体现了纲要中规定的三维目标,也体现了素质教育和全面育人的思想。,义务教育数学课程的具体目标,义务教育阶段数学课程的总目标,具体体现在“知识技能”、“数学思考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 义务教育 数学课程 标准 解读 目标
链接地址:https://www.31ppt.com/p-6535628.html