《函数的极大值与极小值》.ppt
《《函数的极大值与极小值》.ppt》由会员分享,可在线阅读,更多相关《《函数的极大值与极小值》.ppt(19页珍藏版)》请在三一办公上搜索。
1、函数的极大值与极小值,一、知识回顾:,一般地,设函数y=f(x)在某个区间内可导,则函数在该区间 如果f(x)0,如果f(x)0,则f(x)为增函数;,则f(x)为减函数.,一、知识回顾:,根据导数确定函数的单调性的步骤:,1.确定函数f(x)的定义域.,2.求出函数的导数.,3.解不等式f(x)0,得函数单增区间;解不等式f(x)0,得函数单减区间.,一、知识回顾:,注意:如果在某个区间内恒有f(x)=0,则f(x)为常数函数.,当x=x0时,f(x0)=0,且当xx0与xx0时f(x0)异号,则函数在该点单调性发生改变.,二、构建数学,三、新课讲授,一般地,设函数y=f(x)在x=x0及其
2、附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们就说f(x0)是函数的一个极大值,记作y极大值=f(x0),x0是极大值点。如果f(x0)的值比x0附近所有各点的函数值都小,我们就说f(x0)是函数的一个极小值。记作y极小值=f(x0),x0是极小值点。极大值与极小值统称为极值.,(一)、函数极值的定义,1、在定义中,取得极值的点称为极值点,极值点是自变量(x)的值,极值指的是函数值(y)。,注意,2、极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,3、函数的极值不是唯一的即一个函数在某区间上或定义
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的极大值与极小值 函数 极大值 极小
链接地址:https://www.31ppt.com/p-6526417.html