高等数学第七章第六部分.ppt
《高等数学第七章第六部分.ppt》由会员分享,可在线阅读,更多相关《高等数学第七章第六部分.ppt(92页珍藏版)》请在三一办公上搜索。
1、第六节,一、旋转曲面,二、二次曲面,旋转曲面和二次曲面,研究空间曲面有两个基本问题:,(2)已知坐标间的关系式,研究曲面形状,(讨论旋转曲面),(讨论柱面、二次曲面),(1)已知曲面作为点的轨迹时,求曲面方程,一、旋转曲面,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这
2、条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这
3、条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这
4、条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这
5、条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,定义,以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面.,这条定直线叫旋转曲面的轴,建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:,当绕 z 轴旋转时,若
6、点,给定 yoz 面上曲线 C:,则有,则有,该点转到,将 代入,得方程,思考:当曲线 C 绕 y 轴旋转时,方程如何?,解,圆锥面方程,或,例2.求坐标面 xoz 上的双曲线,分别绕 x,轴和 z 轴旋转一周所生成的旋转曲面方程.,解:绕 x 轴旋转,绕 z 轴旋转,这两种曲面都叫做旋转双曲面.,所成曲面方程为,所成曲面方程为,单叶,双叶,二、二次曲面,二次曲面,三元二次方程所表示的曲面称,(二次项系数不全为 0),其基本类型有:,椭球面、抛物面、双曲面、锥面,适当选取直角坐标系可得它们的标准方程,下面仅,就几种常见标准型的特点进行介绍.,讨论二次曲面性状的截痕法:,用坐标面和平行于坐标面的
7、平面与曲面相截,考察其交线(即截痕)的形状,然后加以综合,从而了解曲面的全貌,以下用截痕法讨论几种特殊的二次曲面,(一)椭球面,椭球面与三个坐标面的交线:,椭圆截面的大小随平面位置的变化而变化.,椭球面与平面 的交线为椭圆,同理与平面 和 的交线也是椭圆.,椭球面的几种特殊情况:,旋转椭球面,由椭圆 绕 轴旋转而成,旋转椭球面与椭球面的区别:,方程可写为,与平面 的交线为圆.,球面,截面上圆的方程,方程可写为,(二)抛物面,(与 同号),椭圆抛物面,用截痕法讨论:,(1)用坐标面 与曲面相截,截得一点,即坐标原点,设,原点也叫椭圆抛物面的顶点.,与平面 的交线为椭圆.,当 变动时,这种椭圆的中
8、心都在 轴上.,与平面 不相交.,(2)用坐标面 与曲面相截,截得抛物线,与平面 的交线为抛物线.,它的轴平行于 轴,顶点,(3)用坐标面,与曲面相截,均可得抛物线.,同理当 时可类似讨论.,椭圆抛物面的图形如下:,特殊地:当 时,方程变为,旋转抛物面,(由 面上的抛物线 绕它的轴旋转而成的),与平面 的交线为圆.,当 变动时,这种圆的中心都在 轴上.,(与 同号),双曲抛物面(马鞍面),用截痕法讨论:,设,图形如下:,(三)双曲面,(1)单叶双曲面,椭圆.,时,截痕为,(实轴平行于x 轴;,虚轴平行于z 轴),平面,上的截痕情况:,双曲线:,虚轴平行于x 轴),时,截痕为,时,截痕为,(实轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 第七 第六 部分
链接地址:https://www.31ppt.com/p-6494269.html