财务管理Ch02d-财管价值观念.ppt
《财务管理Ch02d-财管价值观念.ppt》由会员分享,可在线阅读,更多相关《财务管理Ch02d-财管价值观念.ppt(49页珍藏版)》请在三一办公上搜索。
1、2023/11/5,Ch2,FINANCIAL MANAGEMENT,1,第二章 财务管理的价值观念货币时间价值:概念、计算与活用风险与收益利息率证券估价初步,2023/11/5,Ch2,FINANCIAL MANAGEMENT,2,2.1 货币的时间价值一.什么是货币的时间价值?货币时间价值,是指货币经历一定时间的投资和再投资所增加的价值。也称为资金的时间价值。人们习惯于用增加值占投入货币的百分数(%),即相对数字表示货币的时间价值。从量的规定性来看,时间价值是在没有风险,也不计通货膨胀条件下社会的平均资金利润率。由于竞争,市场经济中各部门的利润率趋于平均化。企业投资项目,至少要取得社会的平
2、均资金利润率,否则不如投资另外的项目或行业。因此,货币时间价值成为方案评价的基本标准。,2023/11/5,Ch2,FINANCIAL MANAGEMENT,3,二.货币时间价值的计算(一)单利的计算-本金在贷款期间所生利息,均不加入本金再次计算利息。I=Pit 其中:I-利息 P-本金,又称:期初金额或现值 i-利率(i=I/P)t-时间,也称计息期。是指相临两次计息的时间间隔,如年、季度、月、日等。除非特别声明,t将以年为单位。,2023/11/5,Ch2,FINANCIAL MANAGEMENT,4,(二)复利的计算 复利-每经一个计息期,要将所生利息加入本金再计利息,逐期滚算,俗称“利
3、滚利”的计息方式。1.复利终值设:Fn 为复利终值,P0 为本金,i 为每期利率,n 为期数,则 第 1 期,F1=P0(1+i)=P0(1+i)1 第 2 期,F2=P1(1+i)=P0(1+i)1(1+i)=P0(1+i)2 第 3期,F3=P2(1+i)=P0(1+i)2(1+i)=P0(1+i)3 第n 期,Fn=P0(1+i)n,2023/11/5,Ch2,FINANCIAL MANAGEMENT,5,则:公式:其中:P:本金、现值(Present Value)F:本利和、终值、未来值(Future Value)i:利率(通常指年利率)n:期数(通常以年为单位)例1:已知一年定期存款
4、利率为 2.25,存入 1000 元,每年底将本息再转存一年期定期存款,5 年后共多少钱?解:F5=1000(1+0.025)5=1131.41(元),2023/11/5,Ch2,FINANCIAL MANAGEMENT,6,复利终值系数 为便于计算,通常事先将(1+i)n 的值计算出来,编制成表格,称之为复利终值系数表 通常,记:(F/P,i,n)=(1+i)n则公式可写为:F=P(1+i)n P(F/P,i,n)例2:某人有资金1200元,拟投入报酬率为8的投资机会,经过多少年才使现有资金增加一倍?,120021200(1+8%)n(F/P,8,n)2查表(F/P,8,9)1.999 则
5、n9,2023/11/5,Ch2,FINANCIAL MANAGEMENT,7,例3:现有资金1200元,欲在19年后使其达到原来的3倍,选择投资机会时最低可接受的报酬率为多少?,F=1200*3=3600 而P=1200F=1200*(1+i)19=3600(1+i)19=3 则(F/P,i,19)=3 查表i=6%,2023/11/5,Ch2,FINANCIAL MANAGEMENT,8,2.复利现值 F=P(1+i)n P=F(1+i)n 记:(P/F,i,n)=(1+i)n 称之为复利现值系数则公式可写为:P=F(1+i)n F(P/F,i,n)例4:某人立在5年后获得本利和10000
6、元,假设投资报酬率为10,他现在应投入多少元?,P=F(P/F,i,n)=10000*(P/F,10,5)100000.6216210(元),2023/11/5,Ch2,FINANCIAL MANAGEMENT,9,3.年金 年金(Annuity)指在相同的间隔时间内陆续收到或付出的相同 金额的款项。如折旧、利息、租金、保险费等。(1)普通年金(后付年金)(Ordinary Annuity)指在各期期末收入或付出的年金.普通年金的计算分为:普通年金现值与普通年金终值得计算,2023/11/5,Ch2,FINANCIAL MANAGEMENT,10,n-1,年,F,n-1,n-2,年,F,n-2
7、,n-3,年,F,n-3,2年,F,2,1,年,F,1,A,A,A,A,A,A,A,F,0,第,1,年,第2年,第3年,第n-2年,第n-1年,第n年,设,,A,:每年年末支付的金额;,F,k,:金额,A,在 k 年后的终值;,F,A,:年金终值,则:,F,A,=F,0,+,F,1,+,F,2,+,F,n-2,+,F,n-1,普通年金终值的计算,0,1,2,3,2023/11/5,Ch2,FINANCIAL MANAGEMENT,11,由复利终值公式:Fk=Pk(1+i)k,k=0,1,2,3,,n-1 而 P0=A所以:FA=F0+F1+F2+Fn=A+A(1+i)1+A(1+i)2+A(1
8、+i)n-1(1+i)n1=A=A(F/A,i,n)i下式的值称之为年金(复利)终值系数(1+i)n1,记为(F/A,i,n)i,2023/11/5,Ch2,FINANCIAL MANAGEMENT,12,例5:拟在5年后还清10000元债务,从现在起每年年末等额存入银行一笔款项。假设银行存款利率10,每年需要存入多少元?,由题意知:F10000 n=5 i=10%(1+i)n1而 F=A=A(F/A,i,n)i 则:i 1 1 A=F F=10000*(1+i)n1(F/A,i,n)6.105 1638(元)i其中 是年金终值系数的倒数,称为偿债基金系数。(1+i)n1,2023/11/5,
9、Ch2,FINANCIAL MANAGEMENT,13,普通年金现值的计算年金现值指一定时期内每期期末收付的等额款项的复利现值之和,记为PA,设 i 为贴现率,n 为支付的年金期数,A 为每期支付的年金,由复利现值公式,有PA=A(1+i)-1+A(1+i)-2+A(1+i)-n 1(1+i)-n=AA(P/A,i,n)i,记:(P/A,i,n),称之为年金现值系数,2023/11/5,Ch2,FINANCIAL MANAGEMENT,14,例6:某人出国3年,请你代付房租,每年租金100元,年末支付。设银行存款利率10,他应现在给你在银行存多少钱?,已知:n=3 i=10%A=100则:P=
10、A(P/A,i,n)=100(P/A,10%,3)1002.487248.7(元),Ex:假设以10的利率借的20000元,投资于某个寿命为10年的项目,每年至少要收回多少现金才是有利的?(3254元)注:普通年金现值系数的倒数1/(P/A,i,n),它可以把现值折算为年金,称为投资回收系数。,2023/11/5,Ch2,FINANCIAL MANAGEMENT,15,(2)即付年金(先付年金、预付年金)(Annuity Due)指在各期期初收入或付出的年金。即付年金终值的计算 方法一:即付年金终值FAA(F/A,i,n1)1方法二:即付年金终值FA 普通年金FA(1+i)A(F/A,i,n)
11、(1+i),例7:A=200,i=8%,n=6的先付年金终值是多少?方法一:FAA(F/A,i,n1)1 200(F/A,8,61)1查“普通年金终值系数表”(F/A,8,7)=8.923FA 200(8.9231)1584.60(元),2023/11/5,Ch2,FINANCIAL MANAGEMENT,16,即付年金现值的计算方法一:即付年金现值PA A(P/A,i,n1)+1方法二:即付年金现值PA 普通年金PA(1+i)A(P/A,i,n)(1+i),例8:6年分期付款购物,每年初付200元。银行利率为10。问该项分期付款相当于一次现金支付的购物价是多少?方法一:PA A(P/A,i,
12、n1)+1 200(P/A,10%,5)+1=958.20(元)方法二:PA A(P/A,i,n)(1+i)200(P/A,10%,6)(1+10%),2023/11/5,Ch2,FINANCIAL MANAGEMENT,17,资金时间价值的应用例9:某厂欲购设备一台,价值200000元,使用期10年,无残值。投产后每年可为企业获得现金净流量40000元,当时银行利率12,问此投资是否有利?解:先计算此项投资未来收益的现值,若超过买价,则此投资有利,可以购买;否则,投资不利,不应购买。其中,A=40000,n=10,i=12%则投资收益的现值为:,投资收益的现值为226000元,大于购买价格,
13、此项投资有利.,2023/11/5,Ch2,FINANCIAL MANAGEMENT,18,(3)递延(延期)年金(Annuities Starting in the future),指在最初若干期没有收支款项的情况下,后面若干期等额的系列收支。,延期年金终值大小与递延期数无关,计算方法与普通年金相同。延期年金现值的计算 设:A=100,i=10%m=3 n=4 P3 A A A AP方法一:P3A(P/A,i,n)=100(P/A,10%,4)317 则:P=P3(P/F,i,m)A(P/A,i,n)(P/F,i,m)317(P/F,10,3)238.1(元),0,1,2,3,4,5,6,7
14、,2023/11/5,Ch2,FINANCIAL MANAGEMENT,19,方法二:P(m+n)A(P/A,i,m+n)100(P/A,10%,3+4)486.8 P(m)A(P/A,i,m)100(P/A,10%,3)248.7则:P(n)P(m+n)P(m)238.1(元),2023/11/5,Ch2,FINANCIAL MANAGEMENT,20,(4)永续年金(Perpetuity),无限期的定额支付的年金。永续年金没有终值永续年金现值的计算:,由年金现值计算公式 PA=A(P/A,i,n)A 1当 n 时 i 1所以:PA=A i,例10:拟建立一项永久性的奖学金,每年计划颁布10
15、000元奖金。若利率为10,现应存入多少钱?P10000110100000(元),2023/11/5,Ch2,FINANCIAL MANAGEMENT,21,4.名义利率与实际利率 复利的计息期不一定总是一年,有时可能小于一年,如半年(债券)、季度(股利)、月或日(存款)等。当本金 在一年内要复利若干次(m)时,所给出的年利率(i)称为名义利率。这时,每计息期的利率为:r=i/m n 年的计息期数(t)为:t=m n 当 m 1 时,一年内复利几次,则实际得到的利率将高于名义利率 i。实际利率 与名义利率 i 的关系为:ieff=(1 i/m)1,2023/11/5,Ch2,FINANCIAL
16、 MANAGEMENT,22,例11:本金1000元,投资5年,年利率8,每季复利一次,试求其本利和。,每季度利率 r=i/m 844复利次数 t=m n45=20 则:F=1000(F/P,4,20)1486(元)公式推导:F=P(1 i/m)=P(1+ieff)则:ieff=(1 i/m)1(184)1 8.24%,2023/11/5,Ch2,FINANCIAL MANAGEMENT,23,复利系数与利率、计算期数的关系,1、复利终值系数的大小随着利率、计算期数的增加而增加,减少而减少。(正向变动)2、复利现值系数的大小随着利率、计算期数的增加而减少,减少而增加。(反向变动)3、年金终值系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 财务管理 Ch02d 价值观念
链接地址:https://www.31ppt.com/p-6488715.html