测量学第3章-测量误差基本知识.ppt
《测量学第3章-测量误差基本知识.ppt》由会员分享,可在线阅读,更多相关《测量学第3章-测量误差基本知识.ppt(34页珍藏版)》请在三一办公上搜索。
1、数字测图原理与方法,3-4 误差传播定律,在实际工作中有许多未知量不能直接观测而求其值,需要由观测值间接计算出来。例如某未知点B的高程HB,是由起始点A的高程HA加上从A点到B点间进行了若干站水准测量而得来的观测高差h1hn求和得出的。这时未知点B的高程H。是各独立观测值的函数。那么如何根据观测值的中误差去求观测值函数的中误差呢?阐述观测值中误差与观测值函数中误差之间关系的定律,称为误差传播定律。,一、观测值的函数,1、和差函数 设有函数:Z为x、y的和或差的函数,x、y为独立观测值,已知其中误差为mx、my,求Z的中误差mZ。设x、y和z的真误差分别为x、y和z则 若对x、y 均观测了n次,
2、则将上式平方,得,求和,并除以n,得,由于x、y均为偶然误差,其符号为正或负的机会相同,因为x、y为独立误差,它们出现的正、负号互不相关,所以其乘积xy也具有正负机会相同的性质,在求xy时其正值与负值有互相抵消的可能;当n愈大时,上式中最后一项xy/n将趋近于零,即,将满足上式的误差x、y称为互相独立的误差,简称独立误差,相应的观测值称为独立观测值。对于独立观测值来说,即使n是有限量,由于 式残存的值不大,一般就忽视它的影响。根据中误差定义,得,两观测值代数和的中误差平方,等于两观测值中误差的平方之和。,当z是一组观测值X1、X2Xn代数和(差)的函数时,即,式中mxi是观测值xi的中误差。,
3、可以得出函数Z的中误差平方为,结论:n个观测值代数和(差)的中误差平方,等于n个观测值中误差平方之和。,当诸观测值xi为同精度观测值时,设其中误差为m,即 mx1=mx2=mxn=m则为 在同精度观测时,观测值代数和(差)的中误差,与观测值个数n的平方根成正比。,例1:设用长为L的卷尺量距,共丈量了n个尺段,已知每尺段量距的中误差都为m,求全长S的中误差ms。解:因为全长S=LLL(式中共有n个L)。而L的中误差为m。,结论:量距的中误差与丈量段数n的平方根成正比。,例2:如以 30m长的钢尺丈量 90m的距离,当每尺段量距的中误差为5mm时,全长的中误差为:,当使用量距的钢尺长度相等,每尺段
4、的量距中误差都为mL,则每公里长度的量距中误差mKm也是相等的。当对长度为S公里的距离丈量时,全长的真误差将是S个一公里丈量真误差的代数和,于是S公里的中误差为:式中,S的单位是公里。,结论:在距离丈量中,距离S的量距中误差与长度S的平方根成正比。,例3 为了求得A、B两水准点间的高差,今自A点开始进行水准测量,经n站后测完。已知每站高差的中误差均为m站,求A、B两点间高差的中误差。解:因为A、B两点间高差hAB等于各站的观测高差hi(i=l,2n)之和,即hAB=HB-HA=h1+h2+.+hn 结论:水准测量高差的中误差,与测站数n的平方根成正比,2、倍数函数设有函数:Z为观测值的函数,K
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量学 测量误差 基本知识

链接地址:https://www.31ppt.com/p-6476752.html