《机械波和电磁波完全.ppt》由会员分享,可在线阅读,更多相关《机械波和电磁波完全.ppt(99页珍藏版)》请在三一办公上搜索。
1、1,第11章,(Mechanical wave)(6),2,机械振动在弹性媒质中的传播过程称为机械波,如声波、水波、地震波等。变化的电磁场在空间的传播称为电磁波,如无线电波、光波、X射线等。本章主要讨论机械波。重点:行波方程。,波动振动状态的传播过程。,行波振动状态沿一定方向传播的波。,核心:位相。,3,在弹性媒质中,各质点之间是以弹性力相互联系着的。,1.产生机械波的条件:,11-1 机械波的产生和传播,波源产生机械振动;弹性媒质传播振动状态。,当媒质中的一个质点开始振动后,在弹性力的作用下,就会带动邻近质点振动,邻近质点又带动更远质点振动。这样依次带动,就把振动由近及远地传播出去,形成了波
2、动。,4,图11-1,5,应当注意,在波的传播过程中,媒质中的质点并不“随波逐流”,它们在各自的平衡位置附近振动.,显然,沿着波的传播方向,振动是依次落后的。,P点比o点时间落后:,P点比o点位相落后:,(这里:u是波速),传播的是波源的振动状态。,6,2.波面和波线,波线(波射线)波的传播方向。,波面(波阵面)波动过程中,振动位相相同的点连成的面。最前面的那个波面称为波前。平面波波面为平面的波动。本章只讨论这种波。球面波波面为球面的波动。,横波质点的振动方向与波的传播方向相互垂直。纵波质点的振动方向和波的传播方向相互平行。,在各向同性媒质中,波线总是与波面垂直。,7,1.波速u振动状态(位相
3、)的传播速度,又称相速。波速完全由媒质的性质(弹性和惯性)来确定。,如液体、气体中的纵波,波速:,描述波动的物理量,8,2.波的周期T媒质质元完成一次全振动的时间。波的周期完全由波源(周期)确定。频率=1/T。,3.波长一个周期内波动传播的距离。,周期T反映波的时间周期性,而波长反映的是波的空间周期性。显然,周期T也就是波传播一个波长距离所需的时间。,(11-1),4.平面简谐波波面为平面,媒质中各质点都作同频率的简谐振动形成的波动。本章主要讨论这种波。,9,一平面余弦行波在均匀无耗媒质中沿x轴正方向传播,波速u,坐标原点的振动方程为 y=Acos(t+o)求:波动方程(即坐标为x的P点的振动
4、方程)。,注意这里:x表示各质点的平衡位置到坐标原点的距离;y表示各质点对平衡位置的位移。,如图11-4所示,,一、平面简谐波波动式,10,因为我们研究的是均匀无耗媒质中的平面波,所以P点的振幅与原点的振幅相同,故仍是A。,原点o的振动方程为 y=Acos(t+o),要找出P点的振动方程,只要找出P点的振幅和位相就行了。,如前所述,P点的位相比o点落后x/u,写为等式有 P点的位相-o点位相=-x/u即:P点的位相-(t+o)=-x/u,11,P点的位相=(t-x/u)+o,则P点的位相比o点超前 x/u,于是:P点的位相-(t+o)=+x/u,这时波动方程应为,于是P点的振动方程(即波动方程
5、)为,若波沿x轴负方向传播,,12,总结起来,波动方程的标准形式应为,考虑到,=2/T,=uT,波动方程还可写为,13,1.当x=xo(确定值)时,位移y只是时间t的余弦函数:,这是xo处质点的振动方程。,2.当t=to(确定值)时,位移y只是时间x的余弦函数:,此式表示给定时刻to各振动质点的位移分布情况,相应的y-x的曲线就叫做波形曲线,如图16-7所示。,讨论:,14,上式表明,t 时刻x点的振动状态,经时间t后传播到了x+ut 处。即经时间t波沿x轴正方向传播了距离ut,如图17-8所示。,3.当x,t 都变化时,代表一列沿x轴正方向传播的波。,15,16,二、平面简谐波问题举例,第一
6、类:,已知波线上一点的振动方程和传播速度u,写波动方程,已知:M点的振动方程,可以看出:,P点较M点在时间落后,P点较M点在位相上落后,P点的振动(即波动方程):,求波动方程,17,已知:M点的振动方程,可以看出:,P点较M点在时间超前,P点较M点在位相上超前,P点的振动(即波动方程):,18,u,O,x,y,已知:M点的振动方程,可以看出:,P点较M点在时间超前,P点较M点在位相上超前,P点的振动(即波动方程):,19,例题11-1 一波动以u=20cm/s沿x轴负方向传播,A点的振动方程为 yA=0.4cos4t(cm),求波动方程:(1)以A为坐标原点;(2)以B为坐标原点。,解(1)以
7、A为坐标原点。,已知A点的振动方程为 yA=0.4cos4t(cm),P(x)点比已知点A时间超前:,波动方程:,P(x)点比已知点A位相超前:,20,(2)以B为坐标原点。,已知A点的振动方程为 yA=0.4cos4t(cm),P(x)点比已知点A时间超前:,y=0.4cos4(t,波动方程:,P(x)点比已知点A位相超前:,21,例题11-2 一波动以速度u沿x轴正方向传播,p点的振动方程为 yp=Acos(t+),求:(1)坐标原点o的振动方程;(2)波动方程。,解(1)原点o比p点超前l/u,即 o点位相-(t+)=l/u o点位相=t+l/u坐标原点o的振动方程为:y=Acos(t+
8、l/u),(2)波动方程:,o=(+l/u),22,M(x)点比已知点p时间落后:,已知p点的振动方程为 yp=Acos(t+),波动方程:,令x=0得坐标原点o的振动方程为:,另解:,23,例题11-3 一平面简谐波沿x轴正方向传播,振幅A=10cm,角频率=7rad/s,当t=1s时,x=10cm处的a点的振动状态为ya=0,a0。设波长10cm,求该波的波动方程。,解 把已知条件写入波动方程:,当t=1时,对a点有:,对b点有:,解得:u=84cm/s,o=-17/3=/3,波动方程为,24,例题11-4 已知波动方程:,求:(1)此波的传播方向,波的振幅、周期、频率、波长和波速,以及坐
9、标原点的振动初相;(2)x=2m处质点的振动方程,及t=1s时该质点的速度和加速度。(3)x1=1m和x2=2m两点的相差。,解(1)比较法。,波沿x轴正方向传播;A=0.5m,T=2s,=1/2Hz,=4m,u=/T=2m/s,原点的振动初相o=/2。,第二类:,给出平面简谐波的波动式,求各特征量,25,(2)将x=2m代入波动方程就得该处质点的振动方程:,t=1s时该质点的速度和加速度为,(3)x1=1m和x2=2m两点的相差:,26,例题11-5 波速为u=0.08m/s的一平面简谐波在t=0时的波形如图16-11所示,图中p点此时正向y轴正方向运动,求该波的波动方程。,解 由p点此时正
10、向y轴正方向运动,可判定此波沿x轴正方向传播。,=2=0.4。,波动方程为,由图可知,=0.4,又已知u=0.08,所以频率=u/=0.2,第三类:,给出某时刻的波形曲线和波速u,写波动式,27,例题11-6 沿x轴负方向传播的一平面简谐波在t=2s时的波形如图11-11所示,设波速u=0.5m/s,求:(1)图中p点的振动方程;(2)该波的波动方程。,解(1)由图可知,A=0.5,=2,u=0.5,所以T=4,=/2。故 p点的振动方程为,(2)该波的波动方程:,28,11-3 平面波的动力学方程,这就是平面波的动力学方程,它是一个微分方程。,29,平面波动力学方程从动力学的角度推导得来:,
11、设弦很长,密度为.,弦的两端张紧,弹力为F.,在距原点x处,原长为dx的微元段,dm=dx,微元段偏离为y时,,30,x,y,dm,近似处理:,a,b,ab段元在y方向的合外力:,31,根据牛顿第二定律:,32,波动动力学方程从动力学的角度推导得来:,x,y,设弦很长,密度为.,弦的两端张紧,弹力为F.,F,F,x,dx,dx,dy,dm,33,11-4 波的能量和能流,当介质中有机械波传播时,介质质元振动,具有动能,同时介质发生了形变而具有弹性势能。所以波动的过程实际就是能量传播的过程。,一.波的能量密度,设弦很长,线密度为l.,弦的两端张紧,弹力为F.,以弦上的横波为例:,假设线上的横波传
12、播:,34,微元段偏离为y时,此时质元的速度:,x,y,dm,同时段元长度由dx变为,35,段元因形变而具有的弹性势能等于张力在段元伸长过程中做的功。,近似处理:,36,段元的机械能:,设弦的横截面积为S,dx段元的体积为dV=Sdx.,37,讨论:,(1)任意时刻,质元的动能和势能都相等。即,(2)质元的总能量随时间作周期性的变化。这和振动中的情况也是不同的。,波动是能量传播过程。,38,(3)能量密度(单位体积中波的能量)为,(11-19),平均能量密度:,(11-20),二.波的能流和能流密度(波强),单位时间内,通过垂直于波动传播方向的面积S的能量,称为能流。,则在dt时间内通过S面的
13、能量等于该面后方体积为udtS中的能量,于是能流为,能流就是通过垂直于波动传播方向的功率。,39,单位时间内,通过垂直于波动传播方向的单位面积的能量,称为能流密度。显然,能流密度也就是通过垂直于波动传播方向的单位面积的功率。,平均能流密度:,说明:,A 平均能流密度也称波强。,B I与A2成正比。,C I单位是瓦/米2。,(11-20),40,(11-20),小结:,41,例题11-7 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是,(A)质元的动能为零,势能最大。(B)质元的动能为零,势能为零。(C)质元的动能最大,势能最大。(D)质元的动能最大,势能为
14、零。,答:(C),42,a,质点经过b点,动能最大.该处斜率也最大,即 最大,形变最大,势能最大。,质点经过a点,动能最小,该处斜率也最小,动能和势能最小。,对孤立的振动系统而言,只有保守力做功,机械能守恒。,在波动中,每一个质元通过媒质连接起来,每个质元可以从相邻的质元处获得能量,不是孤立的。,43,例题11-8 一电台(视为点波源)平均发射功率10kw,求离电台1km处的波强。,解 能流密度(波强)为,显然,直接用上面的公式无法求得结果。但电台(点波源)发出的能量是通过一个个半径为r的球面的,由定义:能流密度也就是通过垂直于波传播方向的单位面积的功率。于是所求能流密度(波强)为,=7.96
15、10-4(w/m2),44,声波 声强级,引起人听觉的机械波的频率范围:20-20000Hz 人耳的听觉并不与声强成正比,而是与声强的对数成正比。取声强Io=10-12(w/m2)为标准,则声强级:,(dB),树叶沙沙:20dB;正常谈话:60dB;闹市:70dB;飞机起飞:150dB。,11-5 声波 超声波 次声波,45,11-6 电磁波的波动方程,设无限大平面上的电流密度:jy=Acos(t+)。,对abcd:,+(Ey+dEy)l,-Eyl,46,对efgh:,Hz,Hz+dHz,-(Hz+dHz)l,Hzl,47,这表明:电磁场以波的形式在空间传播,形成电磁波。,48,1.波速,真空
16、中:,可见,真空中电磁波的传播速度即为光速。这与实验结果一致。这也表明,光波就是在某一波段的电磁波。,11-2 平面电磁波的基本性质,=c。,2.电场和磁场的周期、相位相同,且,(11-1),49,3.电磁波是横波,4.电磁波的能量密度,电磁波的能量密度:,(11-2),(即单位体积内的电磁能量),50,5.电磁波的能流密度(波强)坡印廷矢量,单位时间内通过与电磁波传播方向垂直的单位面积的能量,叫做电磁波的能流密度,也叫电磁波的强度。,如图,在时间dt内通过面元ds的能量,以S表示能流密度的大小,则,dsdt,dsdt,应是以ds为底面、高度为dt的柱体内的电磁能量。,51,S=,注意到:,于
17、是得 S=EH,电磁波的能流密度可写成矢量形式,电磁波的能流密度矢量又叫坡印廷矢量。,6.电磁波谱(p83),52,例题11-1 设有一平面电磁波在真空中传播,电磁波通过某点时,该点E=50Vm-1。试求该时刻这一点的B和H的大小以及电磁能量密度和能流密度S的大小。,解 由,B=oH,由于,S=EH=6.7(w/m2),53,例题11-2 一电台(视为点波源)的平均发射功率P=40kw,求离电台1km处的能流密度的大小。,解 若用S=EH求解,E、H都不知道。此题可用能流密度的概念求解。,从电台(点波源)发出的能量分布在半径r的球面上,由能流密度的定义可得,54,11-4 振荡电偶极子的辐射,
18、振荡电偶极子的电矩可表示为,pe=pocos t,将振荡电偶极子置于球心,解麦克斯韦方程组得,可见,电磁场都是沿径向r传播的球面波。,55,振荡电偶极子的辐射功率P等于通过整个球面的电磁波的能流,即,56,平均辐射功率:,平均辐射功率与的4次方成正比。可见,要获得好的电磁辐射,电磁波的频率要高,电偶极子的电矩振幅大.,57,11-8 惠更斯原理,媒质中波动传播到的各点,都可以看作是发射子波的波源,其后任一时刻,这些子波的包迹就是新的波阵面。这就是惠更斯原理。作用:知道某一时刻的波阵面,用几何作图的方法就能确定下一时刻的波阵面,从而确定波的传播方向。,图11-12,58,惠更斯原理的不足:不能求
19、出波的强度分布。,图11-13,用惠更斯原理可以解释波的衍射现象。所谓波的衍射是指波在传播过程中遇到障碍物时,其传播方向发生改变,能绕过障碍物的边缘继续前进且强度重新分布的现象。,我们用惠更斯原理画出了新的波阵面及波的传播方向。很明显,波已绕过障碍物的边缘而传播了,即发生了衍射现象。若缝的宽度比波长小得多时,衍射现象将更加显著。,在图11-13中,59,一.波的叠加原理,11-8 波的叠加原理 波的干涉 驻波,现象1:,投二个石头于水中,生二水波,在某一区域相遇,尔后独立传播。,现象2:交响乐团演奏,各乐器都产生声波,在空气中同时传播着许多声波,但是各种乐器的声波各自独立地传播,各声波的波长、
20、频率和传播方向不变。,大量的观察和研究表明:几列波可以保持各自的特点(频率、波长、振幅、振动方向等)同时通过同一媒质,好像在各自的传播过程中没有遇到其他波一样。,因此,在几列波相遇或叠加的区域内,任一点的振动,为各个波单独在该点产生的振动的合成。这一规律称为波的独立传播原理或波的叠加原理。,60,二.波的干涉,两列波(1)频率相同;(2)振动方向相同;(3)相差恒定;,则在空间相遇区域就会叠加出有些地方的振动始终加强,而另一些的振动始终减弱的稳定分布,这种现象称为波的干涉。,下面我们来研究加强和减弱的条件是什么。,61,设两个相干波源S1、S2的振动方程分别为 y10=A1cos(t+1)y2
21、0=A2cos(t+2),S1 p:,S2 p:,P点的合振动为 y=y1+y2,=Acos(t+),(同方向同频率谐振动的合成),从这两波源发出的波在P点相遇,它们单独在P点引起的振动分别为,62,式中,合振动的初相为,P点的合振动为 y=y1+y2=Acos(t+),63,很显然,干涉的强弱取决于两列波的相位差:,=2k,A=A1+A2,加强(相干相长),特别是A1=A2 时,A=2A1,Imax=4I1。,=(2k+1),A=|A1-A2|,减弱(相干相消),特别是A1=A2 时,A=0,Imin=0。,(k=0,1,2),64,例题11-9 两个振幅都为A的相干波源S1和S2相距3/4
22、,S1比S2超前/2,设两波在连线上的波强不随传播距离而改变,试分析S1和S2连线上的干涉情况。,解 干涉的强弱取决于相位差:,S1左側a点:=,S2右側b点:=,S1左側各点都加强,Imax=4I1,S2右側各点都减弱,Imin=0,65,S1和S2之间c点:,=,66,例题11-10 如图所示,原点o是波源,振动方向垂直纸面,波长为。AB为波的反射平面,反射时无半波损失。A点位于o点的正下方,Ao=h,ox轴平行于AB。求ox轴上干涉加强点的坐标。,解,=2k,加强,(k=1,2,3),解得,(最大k:令x=0,得k=2h/),(k=1,2,3 2h/),67,例题11-11 已知:yb=
23、3cos2t,yc=4cos(2t+/2)(SI),从b、c两点发出的波在p点相遇,bp=0.45m,cp=0.3m,u=0.2m/s,求p点的合振动方程。,解,y1=3cos(2t-),=3cos(2t-/2),cp:,y2=4cos(2t+/2-),=4cos(2t-/2),p点的合振动方程:,y=y1+y2=,7cos(2t-/2)m,bp:,68,例题11-12 相干波源S1超前S2,A1=A2=0.2m,频率=100Hz,r1=4m,r2=3.75m,两种媒质中的波速分别为 u1=400m/s,u2=500m/s,求两媒质界面上p点的合振幅。,=0,=A1+A2=0.4m,解 先求两
24、波到达p点的位相差:,69,三.驻 波,两列振幅相等、传播方向相反的相干波进行叠加,就会形成驻波。,70,将两列波合成,可得,这就是驻波方程。,(1)驻波方程实际上是一个振动方程,只不过各点的振幅随坐标x的不同而变化。有些地方振幅始终最大,另一些地方振幅始终为零。整体上看,驻波的波形驻定在原地起伏变化而不传播,这是驻波中“驻”字的意思。,71,(2)波腹和波节位置,波腹:,即,波腹的位置为,波节:,即,波节的位置为,容易算出,相邻的两个波节(或波幅)之间的距离是/2。可见,测出两波节之间的距离,就能算出波长。这是实验中测量波长的一种常用的方法。,72,(3)驻波中的位相,由驻波方程可知,2x/
25、=k+/2为波节,而 2x/在1、4象限的点,各点位相都是 t;2x/在2、3象限的点,各点位相都是(t+)。,可见,在相邻的两波节间,各点的振动位相相同;而在波节两旁,各点的振动位相相反。因此,驻波实际上就是分段振动着的,没有振动状态或相位的传播。这是驻波中“驻”字的又一层意思。,73,74,(4)驻波中的能量,当各质元的位移都同时达到各自的最大值时,其动能为零,全部能量是势能,但波节处质元相对形变大,弹性势能大,因此能量主要集中在波节附近。当各质元同时通过平衡位置时,各质元均无形变,势能为零,全部能量都是动能。由于波腹处质元速度最大,动能最大,因而能量主要集中在波腹附近。从整个过程来看,能
26、量在相邻的波腹、波节间来回转移,它限制在以相邻的波腹和波节为边界的长为/4的小区段中,波节两侧的媒质、波腹两侧的媒质互不交换能量。因此,驻波是不传播能量的。这是驻波中“驻”字的再一层意思。,75,(5)关于半波损失,.,值得注意的是,在反射点B处绳是固定不动的,因而此处只能是波节。从振动合成考虑,这意味着反射波与入射波的相位在此处正好相反,或者说,入射波在反射时有的相位突变。由于相距半个波长的两点相差为,所以,这种入射波在反射时发生的相位突变的现象常称为半波损失。一般情况下,当波从波疏媒质垂直入射到波密媒质界面上反射时,反射时就有半波损失。,76,例题11-13 一弦上的驻波方程为,求:(1)
27、形成驻波的两波的振幅和波速;(2)相邻两波节之间的距离;(3)t=3.0010-3s时,位于x=0.625m处质点的振动速度。,解:(1)比较法,A=1.5010-2m,=1.25m,=275Hz,u=343.8m/s,77,(2)相邻两波节之间的距离:,(=1.25m),=0.625m,(3)t=3.0010-3s时,位于x=0.625m处质点的振动速度。,x=0.625,=-46.2(m/s),78,例题11-14 一列横波在绳上传播,其表达式为(1)现有另一列横波y2与上述已知横波在绳上形成驻波,这一列横波y2在x=0处与已知横波位相相同,写出该波y2的方程。(2)写出绳上的驻波方程;(
28、3)波幅和波节位置。,解(1)设波y2的方程为,因y2在x=0处与已知横波位相相同,所以o=0,79,(2)写出绳上的驻波方程:,(3)波幅和波节位置。,波幅:,波节:,80,解(1)设反射波方程为,由于反射端为自由端(无半波损失),入射波和反射波在p点相差为零,即,反射波方程为,例题11-15 波 沿棒传播,在x=L处(p点)反射,反射端为自由端,求:(1)反射波方程;(2)驻波方程。,81,(2)驻波方程。,驻波方程为,82,例题11-16 振幅为A、频率为、波长为的 一简谐波沿弦线传播,在固定端P点反射,假设反射后波不衰减。已知:OP=7/8,DP=3/8,在t=0时,x=0处煤质质元的
29、合振动经平衡位置向负方向运动,求D点处入射波和反射波的合振动方程。,解:设入射波方程为,设反射波方程为,驻波方程:,83,反射点P(x=7/8)处为固定点,这表示P点处为波节:,已知:t=0时,x=0处煤质质元的合振动经平衡位置向负方向运动。,84,x=0处煤质质元的合振动方程:,已知:t=0,x=0处煤质质元的合振动经平衡位置向负方向运动:,驻波方程:,85,D点处入射波和反射波的合振动方程:,(已知:OP=7/8,DP=3/8),86,例题11-17 设波源位于坐标原点o处,其振动方程为yo=Acost。在x=-3/4处的Q点有一波密反射壁(为波长),如图11-24所示。求:(1)o点发出
30、的沿x轴传播的波的波动方程;(2)Q点反射的反射波的波动方程;(3)oQ区域内合成波的方程;(4)x0区域内合成波的方程;(5)x=-/2处质点p的振动方程。,解(1)沿x轴正方向传播的波:,沿x轴负方向传播的波:,87,(2)设Q点反射的反射波的波动方程为,由于反射壁处有半波损失,入射波y2和反射波yr在Q点相差应为,即,解得 o=-4。最后得Q点反射波的波动方程为,88,oQ区域内合成波的方程为,这是驻波方程。,(4)x0区域内合成波的方程:,(3),这是行波方程。,89,(5)将x=-/2代入oQ区域的驻波方程:,就得x=-/2处质点p的振动方程:,90,11-9 多普勒效应,目前,多普
31、勒效应已在科学研究、工程技术、交通管理、医疗诊断等各方面有着十分广泛的应用。例如分子、原子和离子由于热运动产生的多普勒效应使其发射和吸收的谱线增宽。在天体物理和受控热核聚变实验装置中谱线的多普勒增宽已成为一种分析恒星大气、等离子体物理状态的重要测量和诊断手段。基于反射波多普勒效应的原理,已广泛地应用于车辆、导弹等运动目标速度的监测。电磁波的多普勒效应为跟踪人造卫星提供了一种简便的方法。在医学上所谓“D超”,是利用超声波的多普勒效应来检查人体内脏、血管的运动和血液的流速、流量等情况。在工矿企业中则利用多普勒效应来测量管道中有悬浮物液体的流速。,91,在前面的讨论中,波源和接收器(观察者)相对于媒
32、质都是静止的,接收器接收到的波的频率与波源的频率相同。如果波源或接收器或两者同时相对于媒质运动时,接收器接收到的频率和波源的频率不同。这一现象称为多普勒(Doppler)效应。例如,当高速行驶的火车鸣笛而来时,我们听到的汽笛声调变高,当它鸣笛离去时,我们听到的音调变低,就是多普勒效应的最好例子。为简单起见,下面的讨论假定波源和接收器在同一直线上运动。规定用 s表示波源相对于媒质的运动速度;r表示接收器相对于媒质的运动速度;u表示波在媒质中的传播速度。,什么是多普勒效应呢?,92,1.波源和接收器相对于媒质都静止,当波源和接收器相对于媒质都静止时,波源每作一次全振动,波就在空间传播一个波长的距离
33、,结果就有一个完整的波通过接收器,显然接收器(或观察者)接收到的频率vr就等于波源的频率v,即 vr=u/=v,接收器(或观察者)所接收到的频率等于单位时间内通过接收器(或观察者)所在处的完整波数目。,93,(11-37),2.波源静止,接收器相对于媒质以r运动,当接收器在媒质中静止不动时,他在单位时间内接收到u/个波。,现因接收器以速度r向波源运动,他在单位时间内多接收到r/个波,所以他在单位时间内接收到的波数,即他接收到的频率vr应为,94,3.接收器静止,波源相对于媒质以s运动,当波源和接收器(观察者)都静止,则分布在So内的波数在单位时间内都要通过接收器。,由于波速不变,这些波数在单位
34、时间内都要通过接收器,但波长变短了。现在的波长是,若波源以速度s向着接收器运动,单位时间内从S点到达S。原来分布在So内的波数现在分布在 o内;,95,接收器接收到的频率vr就是,(11-38),4.波源和接收器都运动,接收器运动相当于接收器(或观察者)感觉到的波速变大为(u+r),而波源运动相当于波长变短为(u-s)/v。综合这两种分析,可得当波源和接收器都运动时,接收器接收到的频率为,(11-39),96,(11-39),应当指出,无论波源和接收器是相向运动还是彼此背离,上式都是成立的。其符号法则是 波源和接收器相向运动,r取正值;相背取负值。波源和接收器相向运动,s取正值;相背取负值。,
35、5.电磁波(如光波)也有多普勒效应,(11-40),其中,是波源和接收器的相对运动速度。,97,例题11-18 一声源频率v=1500Hz,它以多大的速度向着一静止观察者运动时,观察者才听不见声音?(声速u=330m/s),解 由多普勒效应公式,这里:v=1500,u=330,r=0,人听觉频率范围:vr=2020000Hz,取vr=20000,算得,即声源的速度s305.25m/s时,观察者就听不见声音。,98,例题11-19 一汽车驶过车站时,车站上的观察者测得汽车喇叭频率由1200Hz变为1000Hz,空气中的声速u=330m/s,求汽车的速度及喇叭的固有频率。,解 多普勒效应公式,汽车驶来时,,汽车驶离时,,解得,汽车速度s=30(m/s),喇叭频率v=1090.9Hz。,99,例题11-20 一人携带频率为v的声源以速度走向墙壁,,解(1)人直接听到的声波频率:,(2)人听到的从墙壁反射回的声波频率:,(因相向运动),所以拍频为,求:(1)人直接听到的声波频率;(2)拍频。(设声波速度为u),
链接地址:https://www.31ppt.com/p-6473947.html