抽样z变换频率抽样理论.ppt
《抽样z变换频率抽样理论.ppt》由会员分享,可在线阅读,更多相关《抽样z变换频率抽样理论.ppt(69页珍藏版)》请在三一办公上搜索。
1、第六节抽样z变换频率抽样理论,我们将先阐明:(1)z变换与DFT的关系(抽样z变换),在此基础上引出抽样z变换的概念,并进一步深入讨论频域抽样不失真条件。(2)频域抽样理论(频域抽样不失真条件)(3)频域内插公式,一、z变换与DFT关系(1)引入,连续傅里叶变换引出离散傅里叶变换定义式。离散傅里叶变换看作是序列的傅里叶变换在 频 域 再 抽 样 后 的 变 换 对.在Z变换与L变换中,又可了解到序列的傅里叶 变换就是单位圆上的Z 变 换.所以对序列的傅里叶变换进行频域抽样时,自 然可以看作是对单位圆上的 Z变换进行抽样.,(2)推 导,Z 变 换 的 定 义 式(正 变 换)重 写 如 下:取
2、z=ejw 代 入 定 义 式,得 到 单 位 圆 上 Z 变 换 为w是 单 位 圆 上 各 点 的 数 字 角 频 率.再 进 行 抽 样-N 等 分.这 样w=2k/N,即w值为0,2/N,4/N,6/N,考虑到x(n)是N点有限长序列,因而n只需0N-1即可。将w=2k/N代入并改变上下限,得 则这正是离散傅里叶变换(DFT)正变换定义式.,(3)结论1,从 以 上 推 导 中 可 看 出,有 限 长 序 列 x(n)的 离 散 傅 里 叶 变 换 X(k)序 列 的 各 点 值 等 于 对 x(n)进 行 Z 变 换 后 在 单 位 圆 上 N 等 分 抽 样 的 各 点 处 所 得
3、 的 Z 变 换 值,即 这 就 是 Z 变 换 与 DFT 的 关 系.,(4)结论2,有限长序列补零加长 N增加,求其DFT。发现频 谱包络不变,只是抽样点更密.原因:即N补零加长并不改变有限长序列本身,因而其 Z变换不变,而只是增加了N值。根 据 每个 X(k)仍 等 于X0(ejw)这 一 包 络.由于0kN-1,X(k)值的个数增加了,谱线变密.,二、频率抽样理论(频域抽样不失真条件)(1)问题引入,由 Z 变 换 与 DFT 的 关 系,知 道:x(n)的 离 散 傅 里 叶 变 换 X(k)序 列 值 和 x(n)的 Z 变 换 在 单 位 圆 N 个 等 分 点 上 的 抽 样
4、 值 相 等,这 就 是 说 实 现 了 频 域 的 抽 样。便 于 计 算 机 计 算而提出的.是否任何一序列(或说任何一个频率特性)都能用频域抽样的办法去逼近呢?其 限 制 条 件 是 什 么?,(2)分析,将x(n)的频域函数X(ejw),按每周期 N点抽样,得到一周期序列,再反变换回时域,得到变换结果,是一周期延拓的序列,且与原序列x(n)有如下关系即 频 域 按 每 周 期 N 点 抽 样,时 域 便 按 N 点 周 期 延 拓.此结果符合频域抽样,时域周期延拓的说法.,(3)结论,长度为M的有限长序列,频域抽样不失真的条件:频域抽样点数N要大于或等于序列长度M,即满足NM.此时可得
5、到 表明长度为N(或小于N)的有限长序列可用它的z变换在单位圆上的N个均分点上的抽样值精确地表示.,(4)抽样后序列能否无失真恢复原时域信号,(5)注意点,DFT 变 换 对 的 一 一 对 应 关 系 也 是 由 此 而 得 到 保 证 的.实 际 上,在 我 们 从 连 续 傅 里 叶 变 换 引 出 DFT 时,也 只 有 按 此 条 件 对 频 域 进 行 抽 样,才 能 在 最 后 正 确 导 出 DFT 变 换 对 定 义式.,(6)例子-1,频域抽样:看一个矩形序列,频域抽样是指对时域已是离散,频域仍是连续信号。现在频域上进行抽样处理,使其频域也离散化。,(6)例子-2,解:频域
6、抽样,按N=5点,频域抽样,时域延拓相加,时域延拓的周期个数等于频域的抽样点数N=5,由于N=M,所以时域延拓恰好无混叠现象。,(6)例子-3,按N=4时进行抽样,由于N=4,而序列长度为M=5,NM,时域延拓后产生混叠现象。(原信号为红色,延拓取主值区间后的恢复信号为兰色。),三、频域内插公式,从 频 域 抽 样 不 失 真 条 件 可 以 知 道:N 个 频 域 抽 样 X(k)能 不 失 真 的 还 原 出 长 度 为 N 的 有 限 长 序 列 x(n)。那 么 用 N 个 X(k)也 一 定 能 完 整 地 表 示 出 X(z)以 及 频 率 响 应 即 单 位 圆 上 的 X(z)
7、.过 程 很 简 单,先 把 N 个 X(k)作 IDFT 得 到 x(n),再 把 x(n)作 Z 变 换 便 得 到 X(z).,(1)内插公式,(2)内插函数,(3)频域响应的内插公式,(4)频域响应的内插函数,(5)说明,从 公 式 中看 出:在 每 个 抽 样 点 上X(ejw)就 精 确 地 等 于 X(k)(因 为 其 他 的 内 插 函 数 在 这 一 点 上 的 值 为 零,无 影 响),即各 抽 样 点 之 间 的X(ejw)值,则 由 各 抽 样 点 的 加 权 内 插 函 数 在 所 求 点 上 的 值 的 叠 加 而 得到.频 率 响 应 的 内 插 函 数 具 有
8、线 性 相 位.,第七节DFT的应用,一、引言,FT及FFT在数字滤波、功率谱分析、仿真、系统分析、通讯理论方面有广泛的应用。归 结 起 来,有两个大方面,一是计算线性卷积、线性相关;二是用 DFT(FFT)作为连续傅里叶变换 的近似.FFT并不是什么新的变换,只是DFT在计算机上的 一 种高速算法,虽实际 中广泛使用的是 FFT,但 其应用的理论基础仍是 DFT.通过考察计算线性卷积(相关)和连续傅里叶逼近这两种DFT应用,就可以说我们建立了一 般 FFT 应用的基本理论基础.,二、应用方面,1、采 用 DFT 办 法 求 解 线 性 卷 积。2、采 用 DFT 逼 近 连 续 时 间 信
9、号 的 傅 里 叶 变 换(级 数),三、采用DFT办法求解线性卷积(1)引入,时域圆周卷积,频域是两序列的 DFT相乘.时频两域的转换(即 DFT 及 IDFT)有快速 傅里叶变换(FFT)算法.所以利用圆周卷积定理计算圆周卷积比计算线性卷积的计算速度快得多.实际问题中x(n)即信号通过线性时不变系统h(n)后的响应y(n)是线 性卷积运算.想:若做卷积的两序列都是有限长序列,能否用它们的圆周卷积结果代替它们的线性卷积结果呢?即圆周卷积与线性卷积的关系是什么?,线性时不变系统,h(n),y(n)=x(n)*h(n),(2)定理,设 有 限 长 序 列x1(n)0nN1-1,x2(n)0nN2
10、-1 我 们 把x1(n)、x2(n)补零点 至 L 点,L max(N1,N2).x1(n)与x2(n)L点圆周卷积:x1(n)与x2(n)线性卷积:(注 意:y(n)是 L 点 序 列,yL(n)是N1+N2-1点序列)只要经过简单的推导,就会得到y(n)与yL(n)的关系定理,(3)说明,x1(n)与x2(n)的L点圆周卷积结果y(n)=x1(n)与x2(n)的线性卷积结果yL(n)以L点周期延拓后再取主值序列.如 L取适当,则线性卷积结果yL(n)被L点周期延拓后无混叠。即其主值序列=线性卷积结果,从而实现圆周卷积代替线性卷积.所谓L的适当值,显然应当L N1+N2-1最终结论:当L
11、N1+N2-1时,圆周卷积可以代替线性卷积即:,从:,看出:,(4)圆卷积代替线卷积的实现方法-1,设L为圆卷积点数:设 x(n)是 激 励,是0nN1-1 的 有 限 长 序 列;h(n)是线性时不变系统的系统函数(冲激响应),是0nN2-1的有限长序列;y(n)是激励通过系统后的响应,即 y(n)=x(n)*h(n).,选好圆卷积点数L(L N1+N2-1),圆卷积,L点圆周延拓,再取主值,线性卷积,4)圆卷积代替线卷积的实现方法-2,取L N1+N2-1情况下,圆周卷积代替线性 卷积的实 际 实 现 的 框 图 如 下上图依据的是圆周卷积定理,做的是圆周卷积.然而由于L选取符合条件,因而
12、结果是与 线性卷积结果一致的.,L点DFT,h(n),L点DFT,L点DFT,x(n),y(n),四、采用DFT逼近连续时间信号的付里叶变换(级数),我 们 知 道 DFT 的 最 初 引 入 就 是 为 了 使 数 字 计 算 机 能 够 帮 助 分 析 连 续 时 间 信 号 的 频 谱 DFT 的 快 速 算 法-快 速 傅 里 叶 变 换(FFT)的 出 现 使 得DFT这种分析 方 法具有实用价值和重要性.我 们 这 里 将 简 单 的 讨 论 逼 近 的 方 法 和 同 时 产 生 的 问 题.,1、讨论内容,用DFT逼近连续非周期信号的傅里叶变换。用DFT逼近连续周期信号的傅里叶
13、级数。用DFT逼近有限长信号的傅里叶变换。用DFT做傅里叶变换(级数)的逼近时所产生的 问 题。,2、用DFT逼近连续非周期信号的傅里叶变换,在 信 号 与 系 统 中 详 细 讨 论 的 连 续 非 周 期 信 号 的 傅 里 叶 变 换 是连续非周期性的频谱函数,数 字 计 算 机难 于 处 理 的,因 而 我 们 采 用 DFT 对 其 进 行 逼 近.,(1)分析,设:对连续非周期信号进行时域抽样,抽样间隔 为 T(时域);对其连续非周期性的频谱函数进行频域抽样,频域抽样周期为 F(频域).又因时域抽样,频域必然周期延拓;且延拓周期为时域抽样的频率值,即频域周期fs=1/T;从频域抽样
14、理论知识可知:频域抽样后对应时域按频域抽样间隔的倒数周期延拓,即 Tp=1/F.对限长的信号计算机是不能处理的,必须对时域与 频域做截断,若时域取N点,则频域至少也要取N点.(参见频域抽样不失真条件).我们把以上的推演过程用严密的数学公式来表示:,(2)时域的抽样与截断,(3)频域的抽样与截断,(4)由对连续非周期信号进行频域抽样就推出DFT变换式,把 后 两 式 进 行 从 连 续 域 到 离 散 域 的 必 要 的 处 理,如 令 T=1 等,就 得 到 了 我 们 熟 悉 的 DFT 变 换 对 定 义 式.,(5)用 DFT 逼 近 连 续 非 周 期 信 号 的 傅 里 叶 变 换结
15、论1,从 以 上 分 析,特 别 是 最 后 得 出 的 两 式,不 难 看 出:如 果 用 DFT 定 义 式 去 计 算 一 个非 周 期 的 信 号 的 傅 里 叶 变 换,则 频 谱 的 正 常 电 平 幅 度 与 用 DFT 算 得 的 频 谱 幅 度 相 差 一 个 加 权-T.,(6)用 DFT 逼 近 连 续 非 周 期 信 号 的 傅 里 叶 变 换结论2,同 理,用 IDFT 定 义 式 去 计 算 一 个 非 周 期 信 号 的 傅 里 叶 反 变 换,则 需 再 加 权 一 个 N*F=fs.由 于 fs=1/T,所 以 一 个 时 间 信 号 从 时 域 到 频 域
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽样 变换 频率 理论

链接地址:https://www.31ppt.com/p-6472490.html