安全工程通风安全学.ppt
《安全工程通风安全学.ppt》由会员分享,可在线阅读,更多相关《安全工程通风安全学.ppt(79页珍藏版)》请在三一办公上搜索。
1、第二章 矿井空气流动基本理论,第四章 通风动力,通 风 安 全 学第二章 矿井空气流动基本理论,河南工程学院安全工程系,1.主要内容 矿井空气成分,矿井空气中主要成分的质量(浓度)标准、矿井中有毒、有害气体的基本性质和危害性及安全浓度标准。矿井气候条件平衡量指标(干球温度、湿球温度、等效温度、同感温度、卡他度)。2.解决的实际问题(1)要保证作业人员健康,井下空气质量和数量的最低要求;(2)矿井空气中氧气(O2),二氧化碳(CO2)的浓度要求;(3)各种有害气体的危害性与最高允许浓度标准;(4)矿井气候条件衡量方法与指标,保证有一个舒适的作业环境。,上一章内容回顾,第一节 空气的主要物理参数,
2、第二节 风流的能量与压力,第三节 矿井通风中的能量方程,第四节 能量方程在矿井通风中的应用,本章主要内容,重点:空气的物理参数-T、P、;风流的能量与点压力-静压,静压能;动压、动能;位能;全压;抽出式和压入式相对静压、相对全压与动压的关系;能量方程-连续性方程、单位质量能量方程、单位体积能量方程;能量方程在矿井中的应用-边界条件、压力坡度图。难点:点压力之间的关系能量方程及其在矿井中的应用,本章重点难点,1、一年中冬季还是夏季大气压力大?一天中那个时间大气压力最小?2、温度与压力相同时,干空气密度大还是湿空气密度大?3、为什么位能不能用仪表直接测量?4、测定风流点压力时,水柱计放置位置对测值
3、有影响吗?5、为什么会在正压通风会出现相对静压为负值的区段?6、风机全压主要是来克服哪些能量的?7、为什么抽出式风机要加扩展器?,思考题,矿井空气沿井巷流动过程中宏观力学参数的变化规律以及能量的转换关系。介绍空气的主要物理参数、性质,讨论空气在流动过程中所具有的能量(压力)及其能量的变化。根据热力学第一定律和能量守恒及转换定律,结合矿井风流流动的特点,推导了矿井空气流动过程中的能量方程。能量方程在矿井通风中的应用。,需掌握知识点,一、温度 温度是描述物体冷热状态的物理量。测量温度的标尺简称温标。矿井表示气候条件的主要参数之一。国际单位为:热力学温标,其单位为K(kelvin),用符号T来表示,
4、单位为K,热力学温标规定纯水三相态点温度(气、液、固三相平衡态时的温度)为基本定点,定义为273.15K。常用的摄氏温标为实用温标,用符号t表示,单位为摄氏度。摄氏温标的每1与热力学温标的每1K完全相同,它们之间的关系为:T=273.15+t 温度是矿井表征气候条件的主要参数,规程规定:生产矿井采掘工作面的空气温度不得超过26,机电硐室的空气温度不得超过30。,第一节 空气的主要物理参数,二、压力(压强)在矿井通风学中,习惯把压强称为压力。大气压力:地球表面一层很厚的空气层对地面所形成的压力。其大小取决于重力场中位置(相对高度),空气相对温度、湿度(相对湿度)和气体成分等参数。空气的压力也称为
5、空气的静压,用符号P表示。它是空气分子热运动对器壁碰撞的宏观表现。计算公式为:P=2/3n(1/2mv2)气体的静压力是单位体积内气体分子不规则热运动总动能的2/3转化为能对外做功的机械能的宏观表现,故压力的大小表示单位体积气体的压能的数量,这是气体所具有的普遍的物理性质,其大小可以用仪器来测量,空盒气压计、水银气压计、水柱计、精密气压计等可以用来测量压力。,第一节 空气的主要物理参数,由于重力的影响,空气的密度与压力均随着离地表的高度而减小。大气层的存在和大气压力随高度而变化的规律是分子热运动和地球引力作用两者协调的结果。在物理学中,单位体积气体的分子数n,在重力场中随高度分布的规律用波尔兹
6、曼公式表示:no-海平面(z=o)单位体积的分子数;-空气的摩尔质量,28.97kg/kmol;Z-海拔高度,m;T-空气温度,T=273.15+t,K;g-重力加速度,9.80665m/s2;RO-通用气体常数(摩尔气体恒量),8.314 J/(molK);,第一节 空气的主要物理参数,大气压力随高度的变化规律如下,不同标高处的空气压力比值,实际上各地的大气压力还和地表气象因素有关,一年四季,甚至一昼夜内都有明显的变化。例如:淮南一昼夜内气压变化一般为270400Pa有时可达1300Pa,一年中大气压变化可高达40005300Pa。一般来讲,在同一水平面,不大的范围内,可以认为空气压力是相同
7、的。,第一节 空气的主要物理参数,矿井常用压强单位:Pa(帕斯卡)、MPa(兆帕)、mmHg(毫米汞柱)、mmH20(毫米水柱)、bar(巴)、atm(标准大气压)等。换算关系:1atm=760mmHg=1.01325bar=101325Pa 1mmHg=13.595mmH20=133.32 Pa 1mmH20=9.81 Pa具体可以参考教材P434附录一,第一节 空气的主要物理参数,三、湿度 表示空气中所含水蒸汽量的多少或潮湿程度。空气湿度的表示方法:绝对湿度、相对温度和含湿量三种。、绝对湿度 每立方米空气中所含水蒸汽的质量叫空气的绝对湿度。其单位与密度单位相同(kg/m3),其值等于水蒸气
8、在其分压力与温度下的密度,用符号v表示,v=Mv/V。饱和空气:在一定的温度和压力下,单位体积空气所能容纳水蒸汽量是有极限的,超过这一极限值,多余的水蒸汽就会凝结出来。这种含有极限值水蒸汽的湿空气叫饱和空气,这时水蒸气分压力叫饱和水蒸分压力PS,其所含的水蒸汽量叫饱和湿度s。、相对湿度 单位体积空气中实际含有的水蒸汽量(V)与其同温度下的饱和水蒸汽含量(S)之比称为空气的相对湿度 VS 反映空气中所含水蒸汽量接近饱和的程度。,绝对湿度只能说明空气中实际含有水蒸气量,并不能说明其干湿程度。如18的空气,饱和水蒸气量为s=0.01536kg/m3,在30时,s=0.03037kg/m3。当温度为3
9、0时,若仍含有0.01536kg/m3水蒸气时,则还有相当大的容纳水分的能力,而认为是比较干燥的空气。所以此时在实际上常用相对湿度来表示空气的干湿程度。,第一节 空气的主要物理参数,愈小 空气愈干爆,0 为干空气;愈大 空气愈潮湿,为饱和空气。温度下降,其相对湿度增大,冷却到=1时的温度称为露点例如:甲地:t=18,V0.0107 Kg/m3,乙地:t=30,V0.0154 Kg/m3解:查表 当t为18,s 0.0154 Kg/m3,当t为30,s 0.03037 Kg/m3,甲地:VS0.770%乙地:VS0.5151%乙地的绝对湿度大于甲地,但甲地的相对湿度大于乙地,故乙地的空气吸湿能力
10、强。露点:将不饱和空气冷却时,随着温度逐渐下降,相对湿度逐渐增大,当达到100时,此时的温度称为露点。上例 甲地、乙地的露点分别为多少?,第一节 空气的主要物理参数,第一节 空气的主要物理参数,1 kg 理想气体,、含湿量 含有1kg干空气的湿空气中所含水蒸汽的质量(kg)称为空气的含湿量。,将,代入得:,第一节 空气的主要物理参数,井下空气湿度的变化规律,夏,冬,进风线路有可能出现冬干夏湿的现象。进风井巷有淋水的情况除外。在采掘工作面和回风线路上,气温长年不变,湿度也长年不变,一般都接近100,随着矿井排出的污风,每昼夜可从矿井内带走数吨甚至上百吨的地下水。,第一节 空气的主要物理参数,四、
11、焓 焓是一个复合的状态参数,它是内能u和压力功PV之和,焓也称热焓。单位质量物质的焓称为比焓(有时也将比焓简称为焓),即有:i=id+diV=1.0045t+d(2501+1.85t)实际应用焓-湿图(I-d),第一节 空气的主要物理参数,第一节 空气的主要物理参数,五、粘性 当流体层间发生相对运动时,在流体内部两个流体层的接触面上,便产生粘性阻力(内摩擦力)以阻止相对运动,流体具有的这一性质,称作流体的粘性。其大小主要取决于温度。根据牛顿内摩擦定律有:式中:比例系数,代表空气粘性,称为动力粘性或绝对粘度。其国际单位:帕.秒,写作:Pa.S。运动粘度为:温度是影响流体粘性主要因素,气体,随温度
12、升高而增大,液体反之。,粘性取决于分子间的吸引力和热运动动量交换。温度升高,则分子间的吸引力降低,动量会增加。对于液体,分子间的吸引力为主要影响因素;对于气体,分子间热运动产生动量交换是决定性因素。,第一节 空气的主要物理参数,六、密度 单位体积空气所具有的质量称为空气的密度,与P、t、湿度等有关。湿空气密度为干空气密度和水蒸汽密度之和,即:根据气体状态方程,可推出空气密度计算公式:式中:P为大气压,Ps为饱和水蒸气压,单位:Pa;为相对湿度;t为空气温度,。,第一节 空气的主要物理参数,七、密度计算例1:测知某巷道内空气压力为P=100017Pa,干温度td=18.3,湿温度为tw=18.1
13、,求空气密度。解:,经查可知:Ps=2102Pa,=98%,第一节 空气的主要物理参数,第一节 空气的主要物理参数,干温度td=18.3,湿温度为tw=18.1,=98%,第一节 空气的主要物理参数,七、矿内空气的热力变化过程 矿井空气热力学和自然风压计算等课题都要求对井下空气的状态变化给予具体分析。气体状态方程:,1)等容过程 在比容保持不变的情况下所进行的热力变化过程。当v=常数,由气体状态方程可知:等容过程是v不变而绝对压力和绝对温度成正比变化的过程。因v不变,即dv=0,则Pdv=0,热力学第一定律得:,第一节 空气的主要物理参数,在这个过程中,空气不对外做功,空气所吸收或放出的热量等
14、于内能的增加或减少。因 不变,空气密度也不变,则通风常用的积分式的变化(即压能变化)为:,第一节 空气的主要物理参数,2)等压过程 当P=常数时,则v/T=R/P=常数。表明等压过程是P不变而v和T成正比变化的过程。对外界作功为:热量变化为:在此过程中,空气所吸收或放出的热量等于空气焓的增加或减少。因 不变,压能变化为:,第一节 空气的主要物理参数,3)等温过程 当T=常数时,则 表明等温过程是T不变而P和v成反比变化的过程。因,则对外作功为:因T不变,内能u不变,故热量变化为:,第一节 空气的主要物理参数,在此过程中,空气从外界获得的热量,等于空气对外界作出的功;或者说空气向外界放出的热量,
15、等于空气从外界获得的功。因:故压能变化为:,第一节 空气的主要物理参数,4)绝热过程 绝热过程是空气和外界没有热量交换的情况下dp=0,所进行的膨胀或压缩的过程,空气的T、v都发生变化,而且变化规律很复杂。分析得出:在此过程中空气对外界作出的功等于空气内能的减少;空气从外界获得的功等于空气内能的增加。其状态变化规律为:式中:k绝热指数,对于空气,k=1.41则压能变化为:,第一节 空气的主要物理参数,5)多变过程 这是多种变化过程,这个过程的状态变化规律为:n多变指数,不同的n值决定不同的状态变化规律,描述不同的变化过程;例如当n=0时,P=常数,表示等压过程;n=1时,Pv=常数,表示等温过
16、程;n=K时,Pvk=常数,表示绝热过程;n=时,v=常数,表示等容过程。则压能变化为:,第一节 空气的主要物理参数,6)实际气体的状态方程 实验证明:只有在低压下,气体的性质才近似符合理想气体状态方程式,在高压低温下,任何气体对此方程都出现明显的偏差,而且压力愈大,偏离愈多。实际气体的这种偏离,通常采用与RT的比值来说明这个比值称为压缩因子,以符号Z表示,定义式为:显然,理想气体的Z1,实际气体的Z一般不等于1,而是Z1或Z1。Z值偏离1的大小,是实际气体对理想气体性质偏离程度的一个度量。,第一节 空气的主要物理参数,能量与压力是通风工程中两个重要的基本概念,压力可以理解为:单位体积空气所具
17、有的能够对外作功的机械能。一、风流的能量与压力1.静压能静压(1)静压能与静压的概念 空气的分子无时无刻不在作无秩序的热运动。这种由分子热运动产生的分子动能的一部分转化的能够对外作功的机械能叫静压能,Jm3,在矿井通风中,压力的概念与物理学中的压强相同,即单位面积上受到的垂直作用力。静压Pa=N/m2也可称为静压能,值相等。()静压特点 a.无论静止的空气还是流动的空气都具有静压力;b.风流中任一点的静压各向同值,且垂直于作用面;c.风流静压的大小(可以用仪表测量)反映了单位体积风流所具有的能够对外作功的静压能的多少。如说风流的压力为101332Pa,则指风流1m3具有101332J的静压能。
18、,区别:能量 促使空气流动的根本原因是能量差 压力 对外做功有力的表现联系:风流任一 断面上都有压能、位能和动能,而这三种能量又分别可用相应的静压、位压和动压(速压)来体现。,第二节 风流的能量与压力,()压力的两种测算基准(表示方法)根据压力的测算基准不同,压力可分为:绝对压力和相对压力。a.绝对压力:以真空为测算零点(比较基准)而测得的压力称之为绝对压力,用 P 表示。b.相对压力:以当时当地同标高的大气压力为测算基准(零点)测得的压力称之为相对压力,即通常所说的表压力,用 h 表示。风流的绝对压力(P)、相对压力(h)和与其对应的大气压(P0)三者之间的关系如下式所示:h=P P0,Pa
19、,真空,P0,Pb,ha(+),hb(-),第二节 风流的能量与压力,2、重力位能(1)重力位能的概念 物体在地球重力场中因地球引力的作用,由于位置的不同而具有的一种能量叫重力位能,简称位能,用 EPO 表示。如果把质量为M(kg)的物体从某一基准面提高Z(m),就要对物体克服重力作功(J),物体因而获得同样数量()的重力位能。即:EPO=M.g.Z 重力位能是一种潜在的能量,它只有通过计算得其大小,而且是一个相对值。实际工作中一般计算位能差。(2)位能计算 重力位能的计算应有一个参照基准面。Ep012=igdzi如下图1-2两断面之间的位能差:,第二节 风流的能量与压力,(3)位能与静压的关
20、系 当空气静止时(v=0),由空气静力学可知:各断面的机械能相等。设以2-2断面为基准面:1-1断面的总机械能 E1=EPO1+P1 2-2断面的总机械能 E2=EPO2+P2 由E1=E2得:EPO1+P1=EPO2+P2 由于EPO2=0(2-2断面为基准面),EPO1=12.g.Z12,所以:P2=EPO1+P1=12.g.Z12+P1 说明:a.位能与静压能之间可以互相转化。b.在矿井通风中把某点的静压和位能之和称之为势能。(4)位能的特点 a.位能是相对某一基准面而具有的能量,它随所选基准面的变化而变化。但位能差为定值。b.位能是一种潜在的能量,它在本处对外无力的效应,即不呈现压力,
21、故不能象静压那样用仪表进行直接测量。c.位能和静压可以相互转化,在进行能量转化时遵循能量守恒定律。,第二节 风流的能量与压力,3.动能动压(1)动能与动压的概念 当空气流动时,除了位能和静压能外,还有空气定向运动的动能,用Ev表示,J/m3;其动能所转化显现的压力叫动压或称速压,用符号hv表示,单位Pa。(2)动压的计算 单位体积空气所具有的动能为:Evi iv20.5,J/m3 式中:ii点的空气密度,kg/m3;vi点的空气流速,m/s。Evi对外所呈现的动压hvi,其值相同。,第二节 风流的能量与压力,(3)动压的特点 a.只有作定向流动的空气才具有动压,因此动压具有方向性。b.动压总是
22、大于零。垂直流动方向的作用面所承受的动压最大(即流动方向上的动压真值);当作用面与流动方向有夹角时,其感受到的动压值将小于动压真值。c.在同一流动断面上,由于风速分布的不均匀性,各点的风速不相等,所以其动压值不等。d.某断面动压即为该断面平均风速计算值。,第二节 风流的能量与压力,()全压 风道中任一点风流,在其流动方向上同时存在静压和动压,两者之和称之为该点风流的全压,即:全压静压动压。由于静压有绝对和相对之分,故全压也有绝对和相对之分。a.绝对全压(Pti)Pti Pihvi b.相对全压(hti)hti hihvi Pti Poi 说明:a.相对全压有正负之分;b.无论正压通风还是负压通
23、风,PtiPi hti hi。二、风流的点压力之间相互关系 风流的点压力是指测点的单位体积(1m3)空气所具有的压力。通风管道中流动的风流的点压力可分为:静压、动压和全压。风流中任一点i的动压、绝对静压和绝对全压的关系为:hvi=Pti-Pi hvi、hI和hti三者之间的关系为:hti=hi+hvi。,第二节 风流的能量与压力,压入式通风(正压通风):风流中任一点的相对全压恒为正。Pti and Pi Poi hi,hti 0 且 hti hi,hti=hi+hvi 压入式通风的实质是使风机出口风流的能量增加,即出口风流的绝对压力大于风机进口的压力。抽出式通风(负压通风):风流中任一点的相对
24、全压恒为负,对于抽出式通风由于hti 和 hi 为负,实际计算时取其绝对值进行计算。Pti and Pi Po i hti0 且 htihi,但|hti|hi|实际应用中,因为负通风风流的相对全压和相对静压均为负值,故在计算过程中取其绝对值进行计算。即:|hti|=|hi|hvi 抽出式通风的实质是使风机入口风流的能量降低,即入口风流的绝对压力小于风机出口的压力。,第二节 风流的能量与压力,hv,htb(-),hb(-),风流点压力间的关系,Pa,真空,P0,Pb,ha(+),P0,Pta,hv,hta(+),Ptb,抽出式通风,压入式通风,压入式通风,抽出式通风,第二节 风流的能量与压力,例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安全工程 通风 安全
链接地址:https://www.31ppt.com/p-6458625.html