多因素试验结果统计分析.ppt
《多因素试验结果统计分析.ppt》由会员分享,可在线阅读,更多相关《多因素试验结果统计分析.ppt(156页珍藏版)》请在三一办公上搜索。
1、第十三章 多因素试验结果的统计分析,第一节 多因素完全随机和随机区组 试验的统计分析第二节 裂区试验的统计分析第三节 一组相同试验方案数据的联合分析第四节 多因素混杂和部分实施试验的 设计和分析(正交试验法)第五节 响应面分析,第一节 多因素完全随机和随机区组 试验的统计分析,一、二 因素试验的统计分析二、三因素试验的统计分析,一、二因素试验的统计分析,(一)二因素随机区组试验结果的分析设有A和B两个试验因素,各具a和b个水平,那么共有ab个处理组合,作随机区组设计,有r次重复,则该试验共得rab个观察值。它与单因素随机区组试验比较,在变异来源上的区别仅在于前者的处理项可分解为A因素水平间(简
2、记为A)、B因素水平间(简记为B)、和AB互作间(简记为AB)三个部分。,(131)(132),其中,j=1,2,r;k=1,2,a;l=1,2,b;、和 分别为第r个区组平均数、A因素第k个水平平均数、B因素第l个水平平均数、处理组合AkBl平均数和总平均数。表13.1 二因素随机区组试验自由度的分解,SSR=,SSt=,SST=,(二)二因素随机区组试验的线性模型和期望均方,二因素随机区组试验的线性模型为:(133),表13.8 二因素随机区组设计的期望均方,二、三因素试验的统计分析,(一)三因素完全随机试验的统计分析 在三因素试验中,可供选择的一种试验设计为三因素完全随机试验设计,它不设
3、置区组,每一个处理组合均有若干个(n个)重复观察值,以重复观察值间的变异作为环境误差的度量。,1.结果整理 2.自由度和平方和的分解总变异可以分解为处理组合变异加上误差变异。处理组合变异又可作分解:处理 DF=DFA+DFB+DFC+DFAB+DFAC+DFBC+DFABC 处理 SS=SSA+SSB+SSC+SSAB+SSAC+SSBC+SSABC,表13.13 三因素完全随机试验的平方和及自由度分解,3.多重比较的标准误公式,A因素间比较时单个平均数的标准误B因素间比较时单个平均数的标准误C因素间比较时单个平均数的标准误AB处理组合的平均数的标准误为:(二)三因素随机区组试验结果的分析 设
4、有A、B、C三个试验因素,各具a、b、c个水平,,作随机区组设计,设有r个区组,则该试验共有rabc个观察值,其各项变异来源及自由度的分解见表13.15。,表13.15 三因素随机区组试验的平方和及自由度分解,DFt=DFA+DFB+DFC+DFAB+DFAC+DFBC+DFABC(134)SSt=SSA+SSB+SSC+SSAB+SSAC+SSBC+SSABC(135)(三)三因素试验的线性模型和期望均方1.完全随机设计三因素完全随机试验每一观察值 yijkl 的线性模型为:(136),表13.21 三因素随机试验设计的期望均方,2.随机区组设计三因素随机区组试验每一观察值yjklm的线性模
5、型为:其中,代表区组效应,固定模型时有,随机模型时,其余参数参见三因素完全随机设计的情形。,(137),表13.22 三因素随机区组设计的期望均方,由F=MS1/MS2可测验 对 0。其有效自由度为:,(138),第二节 裂区试验的统计分析,一、裂区试验结果统计分析示例二、裂区试验的缺区估计三、裂区试验的线性模型和期望均方四、再裂区设计的分析五、条区设计的分析,一、裂区试验结果统计分析示例,设有A和B两个试验因素,A因素为主处理,具a个水平,B因素为副处理,具b个水平,设有r个区组,则该试验共得rab个观察值。其各项变异来源和相应的自由度见表13.23。,表13.23 二裂式裂区试验自由度的分
6、解,例13.4 设有一小麦中耕次数(A)和施肥量(B)试验,主处理为A,分A1、A2、A3 3个水平,副处理为B,分B1、B2、B3、B4 4个水平,裂区设计,重复3次(r=3),副区计产面积33m2,其田间排列和产量(kg)见图13.3,试作分析。,图13.3 小麦中耕次数和施肥量裂区试验的田间排列和产量(kg/33m2),(1)结果整理 将图13.3资料按区组和处理作两向分组整理成表13.24,按A因素和B因素作两向分类整理成表13.25。表13.24 图13.3资料区组和处理两向表,表13.25 图13.3资料A和B的两向表(2)自由度和平方和的分解根据表13.23将各项变异来源的自由度
7、直接填入表13.26。首先,计算总平方和,,然后,根据A因素与区组两向表计算主区总SSM,并分解为区组SSR、SSA和三部分,,主区总,主区总SSM-SSR-SSA=122-32.67-80.17=9.16,根据A与B两向表(表13.25)计算处理平方和SSt,并分解为SSA、SSB和SSAB三部分,,处理,SSAB=处理 SSt-SSA-SSB=7.16,因而,,总SST-主区总SSM-SSB-SSAB=2355-122-2179.67-7.16=46.17,或 总SST-SSR-处理SS-2355-32.67-2267-9.16=46.17至此,平方和分解全部完成,将结果填入表13.26。
8、表13.26 小麦裂区试验的方差分析,(3)F 测验表13.26中,Ea是主区误差,Eb为副区误差。当选用固定模型时,Ea可用以测验区组间和主处理(A)水平间均方的显著性;Eb可用以测验副处理(B)水平间和AB互作均方的显著性。由表13.26得到:区组间、A因素水平间、B因素水平间均有显著差异,但AB互作不显著。由此说明:本试验的区组在控制土壤肥力上有显著效果,从而显著地减小了误差;不同的中耕次数间有显著差异;,不同的施肥量间有显著差异;中耕的效应不因施肥量多少而异,施肥量的效应也不因中耕次数多少而异。(4)效应和互作的显著性测验在此以亩产量进行测验。中耕次数间 表13.25各个TA值为rb=
9、34=12区产量之和,故 cf=666.7/(1233)=1.6835据此可算得各中耕处理的亩产量于表13.27。求得亩,产量的标准误故有,p=2,LSR0.01,4=57.3,LSR0.05,4=34.6(kg/亩);p=3,LSR0.01,4=71.5,LSR0.05,4=44.4(kg/亩)以上述LSR值测验表13.27中A因素各水平的差数,得知A1与A3间的差异达0.05水平,A1与A2间的差异达0.01水平,故以A1为最优。施肥量间 表13.25各个TB值为ra=33=9区产量之和,故 cf=666.7/(933)=2.2448,p=2,LSR0.01,18=44.0,LSR0.05
10、,18=32.1 p=3,LSR0.01,18=50.8,LSR0.05,18=39.0 p=4,LSR0.01,18=54.9,LSR0.05,18=43.2,表13.27 三种中耕处理亩产量的新复极差测验,表13.28 四种施肥量处理亩产量的新复极差测验,以上述LSR值测验表13.28各个亩产量的差数,得知施肥量以B2最好,它与B1、B4、B5都有极显著的差异。比较本例中副处理(施肥量)与主处理(中耕次数)的相应LSR值,前者小,因而鉴别差数的显著性将更灵敏些。究其原因,在于Eb具有较大的自由度而较小的SSR值。如果试验能进一步降低Eb,则灵敏性将更高,这里说明裂区设计对副处理具有较高精确
11、性的优点。,中耕次数施肥量的互作 经F测验为不显著,说明中耕次数和施肥量的作用是彼此独立的,最佳A处理与最佳B处理的组合将为最优处理组合,如本例中的A1B2,所以不需再测验互作效应。如果该互作的F测验显著,则需象表13.6那样将试验结果分裂成各中耕次数下施肥的简单效应或各施肥量下中耕的简单效应,进行测验。其标准误的公式为:A相同B不同时,,任何二个处理或B相同A不同时,,(139),(1310),(5)试验结论本试验中耕次数的A1显著优于A2、A3,施肥量的B2极显著优于B1、B3、B4。由于AB互作不存在,故A、B效应可直接相加,最优组合必为A1B2。,二、裂区试验的缺区估计裂区试验的每一个
12、主区处理都可看作是一个具有b个副区处理的独立试验,各具r次重复;因而每一主区处理内的误差(Eb)也是独立的。故在裂区试验中,如有副区缺失,可采用与随机区组相同的原理估计之。,例13.5 设表13.24资料A1B1在区组I缺失,其结果如表13.29。试作估计。很明显,表13.29中的缺区ye仅对A1处理有影响,而对A2和A3无关。但是A1下的这4个副处理实际上就是随机区组类别,可估计之。,所以 ye=33.3,表13.29 缺失1区产量的裂区试验,或,如果另一缺区在其他主区处理内出现,可同样估计。如果在同一主区处理内出现两个以上缺区,则仍可 应用采用解方程法。,具缺区的处理与其他处理小区平均数比
13、较时各种平 均数标准误SE 的公式如下:,其中,在缺一个副区时,,其中,在缺一个副区时,,k=缺失副区数,c=有缺区的重复数,d=缺区最多的处理组合中缺失的副区数。,若缺失副区在2或2个以上,,三、裂区试验的线性模型和期望均方,在裂区试验中,对于j(=1,2,r)区组、k(=1,2,a)主处理和l(=1,2,b)副处理观察值yjkl的线性模型为:(1312),表13.31 裂区试验的期望均方,四、再裂区设计的分析,若参加试验的因素有三个,可以在裂区中再划分小区称为再裂区试验。设A、B、C三因素分别具有a、b、c个水平,重复r次,主区、裂区、再裂区均为随机区组式排列,则其自由度的分解列如表13.
14、32。,表13.32 各处理均为随机区组式的再裂区设计自由度分解,再裂区试验中各项比较的平均数标准误SE公式如下:,再裂区试验观察值的线性模型为:(1314)(1314)中 N(0,);N(0,);N(0,)。A,B,C,(AB),(AC),(BC),(ABC)通常为固定模型,其限制条件为;。,五、条区设计的分析条区设计:在多因素试验中由于实施试验处理的需要,希望每一因素的各水平都有较大的面积,因而在裂区设计的基础上将同一副处理也连成一片。这样A、B两个因素互为主,副处理,两者的交叉处理为各该水平的处理组合。,若A、B两因素各具a、b个水平,重复r次,则A、B两因素均为随机区组式的条区设计自由
15、度分解列于表13.33。表13.33 A、B两因素均为随机区组式的条区设计自由度分解,图13.4 甘薯垄宽、栽插期条区试验的田间排列和产量结果(kg/80 m2),例13.7 设一甘薯垄宽和栽插期的两因素试验,垄宽(A)具三水平:A1=50cm,A2=60cm,A3=70cm;栽插期(B)具三水平:B1=5月16日,B2=6月6日,B3=6月26日,A、B均为随机区组式排列,6个重复的田间排列与试验结果列于图13.4。(1)结果整理将图13.4资料整理成表13.34(区组与A),表13.35(区组与B),表13.36(A与B)3个两向表,有关符号在表中,意义自明。,表13.34 各区组垄宽产量
16、总和表(TAr)表13.35 各区组栽插期产量总和表(TBr),表13.36 垄宽与栽插期处理组合产量总和表(TAB),(2)平方和与自由度的分解由表13.34进行区组与A两向分组资料的方差分析:区组与垄宽总,=SSAr-SSR-SSA=6583.75,由表13.35进行区组与B两向分组资料的方差分析:区组与栽插期总,88739.03,总SSBr SSR-SSB=4569.30,由表13.36进行A与B两向分组资料的方差分析:垄宽与栽插期总SS3=193719.03 SSAB=总SS3-SSA-SSB=176.30由图13.4计算全试验的总平方和:,全试验总,全试验总SS SSR-总SS3-,
17、=2053.48,按表13.33分解自由度,将平方和与自由度的计算结 果归纳成表13.37。,表13.37 甘薯条区试验方差分析表,(3)F 测验垄宽用区组垄宽(Ea)进行测验;栽插期用区组栽插期(Eb)测验;垄宽栽插期则用剩余误差(Ec)测验。其结果两个因素的主效均极显著,而互作并不显著。因此只须比较各因素主效间的差异、最佳的垄宽及最佳的栽插期为预期将为最佳的处理组合。(4)各效应间比较的显著性测验小区平均数间比较时,平均数标准误SE 的公式如下:,(1315),本例只需做A处理及B处理的比较。,垄宽间的比较:,而LSR0.05,(2,10)=6.053.15=19.06(kg/区),LSR
18、0.05,(3,10)=19.97(kg/区),LSR0.01,(2,10)=27.10(kg/区),LSR0.01,(3,10)=28.62(kg/区),因此可将测验结果列于表13.38,垄宽60cm最佳。,栽插期间的比较:,而LSR0.05,(2,10)=5.043.15=15.87(kg/区),LSR0.05,(3,10)=16.63(kg/区),LSR0.01,(3,10)=22.57(kg/区),LSR0.01,(2,10)=23.83(kg/区)。因此可将测验结果列于表13.39。6月6日栽插效果最好。两者的组合A2B1为试验中最佳处理组合。表13.36同样说明这一结论。,表13.
19、38 垄宽间的比较 表13.39 栽插期间的比较,条区试验观察值的线性模型为:(1316)中 N(0,);N(0,);N(0,)。A,B,(AB)通常为固定模型,其限制条件为;。,(1316),第三节 一组相同试验方案数据的联合分析,农业研究往往需要在多个地点、多个年份甚至多个批次进行试验,各地点、各年份均按相同的试验方案实施,以更好的研究作物对环境的反映。对于这种进行多个相同的方案的试验,应该联合起来分析。,品种区域试验的目的是:确定品种在某一个区域内的平均表现,以确定品种的在该区域生产潜力。确定品种在某地点的平均表现相对于该地点内各品种的平均表现的回归系数大小,以明确品种的稳产性和试验地区
20、。多个试验的联合分析要根据试验的目的选择地点。多个试验的联合分析首先要对各个试验进行分析,然后检验各个试验的误差是否同质,如不同质则不可进行联合方差分析。,例13.8 设一个水稻品种区域试验,包括对照种在内共有5个供试品种,在4个地点进行2年试验,每点每次试验均统一采用相同小区面积重复3次的随机区组设计,其结果列于表13.40。现以此为例说明其分析方法。若令供试品种数为v,试点数为s,年份数为y,每次试验重复数为r,则此试验中,v=5,s=4,y=2,r=3,令y表示各小区的产量;Ts、Ty及Tv等分别代表每一试点、年份、及品种的总和;Tvs、Tvy、Tsy分别代表品种与地点组合的总和、品种与
21、年份组合的总和、年份与地点组合的总和;Tvsy、Trsy分别代表,品种、地点、年份组合的总和,每年份、地点每区组的总和;T代表全部试验数据的总和,各类总和的符号分别标在13.40及表13.44中。区域试验结果的综合分析,不仅要比较供试品种的平均表现;还要了解品种试点、品种年份、以及品种试点年份的互作效应,即了解不同品种在各试点、各年份的差异反应,从而进一步了解品种的稳产性及区域适应性。多年多点统一随机区组设计的自由度分析列于表13.41。,表13.40 水稻品种区域试验产量(kg/33m2),表13.41 多年多点统一随机区组设计的自由度分析表,(1)试验误差的同质性测验在综合分析前,先对各次
22、试验按随机区组设计逐个分析,计算出各次试验单独的误差,测验其误差是否同质,以便确定是否可将误差合并进行统一的比较分析,这可采用Bartlett方差同质性测验法。该法采用统计数进行测验(见第七章)。表13.42为各次试验单独的平方和计算结果。表13.43为误差方差同质性测验的计算过程。本例中,,查 表得,卡方的自由度DF=8-1=7时,=9.80,故P0.20。式中,k 为被测验的方差个数;(ni-1)为每一方差的自由度,本例中实为(v-1)(r-1);19.087为各次试验合并的误差均方。,表13.42 各次试验的平方和计算结果 表13.43 误差方差同质性测验计算表,(2)平方和的分解按表1
23、3.41的自由度分析,计算各部分平方和。Tvs及Tsy的二向表已包括在表13.40中,这里需要列出Tvy的二向表(表13.44)。各主效及处理组合平方和的计算公式及过程列在表13.45。表13.44 品种与年份组合产量总和(Tvy)二向表,表13.45 主效及处理组合平方和计算表,各种交互作用平方和均用减去法计算。试点年份SS=试点与年份组合SS-试点SS-年份SS=16572.05-9324.58-5819.96=1427.51 品种试点SS=品种与试点组合SS-品种SS-试点SS=11583.70-965.71-9324.58=1293.41 品种年份SS=品种与年份组合SS-品种SS-年
24、份SS=7299.21-965.71-5819.96=513.54,品种试点年份SS=品种、试点、年份组合SS-品种SS-试点SS-年份SS-品种试点SS-品种年份SS-试点年份SS=21365.26-965.71-93324.58-819.96-1293.41-513.54-1427.51=2020.55品种SS+品种试点SS+品种年份SS+品种试点年份SS=965.71+1293.41+513.54+2020.55=4793.21它与表13.42中各试验品种平方和的总和相等。,试验内区组间平方和可由各试验分别求出区组平方和再相加,即表13.42中的1706.13,或由表13.45求得:区组
25、、试点、年份组合SS-试点、年份组合 SS=18278.17-16572.05=1706.12两者结果相同。全试验误差平方和可由表13.42中各试验的误差平方和相加,即1221.55,或由总平方和减去其它各主效、区组、一级互作以及二级互作等,这剩余部分即合并的误差SS,其结果也应为1221.55。(3)方差分析方差分析结果列于表13.46。,表13.46 水稻品种区域试验方差分析表,表13.47 多年多点试验的期望均方,F 测验结果说明品种之间平均效应有显著差异;品种与年份、地点的一级和二级互作均显著,因而品种在不同试点、不同年份具有差异反应,需对各品种的地区适应性及稳产性进行具体分析,品种试
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因素 试验 结果 统计分析
链接地址:https://www.31ppt.com/p-6456515.html