复数的三角形式与指数形式课件.ppt
《复数的三角形式与指数形式课件.ppt》由会员分享,可在线阅读,更多相关《复数的三角形式与指数形式课件.ppt(26页珍藏版)》请在三一办公上搜索。
1、第四讲 复数的三角形式与指数形式,4.1复数的三角形式4.2复数的指数形式4.3复数的应用,在中学,我们已经学习过复数及其用代数形式a+bi表达的四则运算法则及算律。,在大学数学中我们学习过建立在实数集合上的微积分称为实分析;同样,在复数集合上也可以讨论函数、导数、微分、积分等问题,这就是大学数学本科(或研究生)专业里一门必修课复变函数,因此我们有必要对复数了解得更多些。,本讲讲三个问题,4.1、复数的三角形式,一、复数的幅角与模,我们知道复数a+bi对应着复平面上的点(a,b),也对应复平面上一个向量(如右图所示),这个向量的长度叫做复数a+bi的模,记为|a+bi|,一般情况下,复数的模用
2、字母r表示。,同时,这个向量针对x轴的正方向有一个方向角,我们称为幅角,记为arg(a+bi),幅角一般情形下用希腊字母表示。,显然,把它们代入复数的代数形式得:,4.1、复数的三角形式,这样,我们把 叫做复数a+bi的三角形式,二、复数三角形式的运算法则,引入复数三角形式的一个重要原因在于用三角形式进行乘除法、乘方、开方相对于代数形式较为简单。,所以这里只介绍三角形式的乘法、除法、乘方与开方的运算法则。,1、复数的乘法,设,那么,4.1、复数的三角形式,二、复数三角形式的运算法则,1、复数的乘法,这说明,两个复数相乘等于它们的模相乘而幅角相加,即,这个运算在几何上可以用下面的方法进行:,将向
3、量z1的模扩大为原来的r2倍,然后再将它绕原点逆时针旋转角2,就得到z1z2。,4.1、复数的三角形式,二、复数三角形式的运算法则,2、复数的除法,4.1、复数的三角形式,二、复数三角形式的运算法则,2、复数的除法,即,这说明,两个复数相除等于它们的模相除而幅角相减,这个运算在几何上可以用下面的方法进行:,将向量z1的模缩小为原来的r2分之一,然后再将它绕原点顺时针旋转角2,就得到z1z2。,3、复数的乘方。,利用复数的乘法不难得到,这说明,复数的n次方等于它模的n次方,幅角的n倍。,4、复数的开方,对于复数,根据代数基本定理及其推论知,任何一个复数在复数范围内都有n个不同的n次方根。,将向量
4、z1的模变为原来的n次方,然后再将它绕原点逆时针旋转角n,就得到zn。,4.1、复数的三角形式,二、复数三角形式的运算法则,3、复数的乘方。,这个运算在几何上可以用下面的方法进行:,设 的一个n次方根为,4、复数的开方,4.1、复数的三角形式,二、复数三角形式的运算法则,那么,所以,即,显然,当k从0依次取到n1,所得到的角的终边互不相同,但k从n开始取值后,前面的终边又周期性出现。,因此,复数z的n个n次方根为,4、复数的开方,4.1、复数的三角形式,二、复数三角形式的运算法则,从求根公式可以看出,相邻两个根之间幅角相差,所以复数z的n个n次方根均匀地分布在以原点为圆心,以它的模的n次算术根
5、为半径的圆周上。,因此,求一个复数z的全部n次方根,可以用下面的几何手段进行:,先作出圆心在原点,半径为 的圆,然后作出角 的终边,以这条终边与圆的交点为分点,将圆周n等分,那么,每个等分点对应的复数就是复数z的n次方根。,4.2、复数的指数形式,在对复数三角形式的乘法规则讨论中,我们发现,复数的三角形式将复数的乘法“部分地”转变成加法(模相乘,幅角相加),这种改变运算等级的现象在初等函数中有过体现:,对数函数与指数函数,前者将两个同底幂的乘积变成同底的指数相加;后者将两个真数积的对数变成两个同底对数的和。,从形式上看,复数的乘法与指数函数的关系更为密切些:,4.2、复数的指数形式,根据这个特
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复数 三角 形式 指数 课件
链接地址:https://www.31ppt.com/p-6456325.html