地铁深基坑支护设计讲稿.ppt
《地铁深基坑支护设计讲稿.ppt》由会员分享,可在线阅读,更多相关《地铁深基坑支护设计讲稿.ppt(167页珍藏版)》请在三一办公上搜索。
1、,广州地铁深基坑,广州市地下铁道设计研究院,广州地铁深基坑支护,一、广州地铁车站深基坑支护介绍,六、关于水、土压力的设计和认识,二、深基坑类型综述,三、围护结构嵌固深度,七、环境影响预估设计问题,四、钢支撑设计与施工,五、锚杆的设计与施工,八、信息化设计和施工九、深基送审要求十、问题讨论和认识,一、广州地铁车站深基坑支护介绍,1、一号线地下车站围护结构汇总,2、广州地铁二号线车站围护结构汇总,3、广州地铁三号线车站围护结构汇总,1.一号线车站围护比较,2.二号线车站围护比较,3.三号线车站围护结构比较表,二.广州地铁各种基坑支护类型介绍 1 地下连续墙 2 人工挖孔桩 3 钻(冲)孔灌注桩 4
2、 土钉墙支护 5 水泥土墙和水泥土地锚复合支护 6 组合式支护结构设计 7 地铁车站支护结构与内衬的经济分析,广州地铁常采用的支护结构可按以下类型划分,1 地下连续墙 1)适用地质条件 各种软弱地层。以淤泥类软土、饱和砂层为主的地层及周围有重要建筑物的情况。2)地下墙的优点 结构的整体刚度和防渗性(止水效果)好;如支撑得当,且配合正确的施工方法和措施,连续墙可较好的控制软土地层的变形;常作为主体结构的一部分来考虑;采用机械化作业,施工条件好。,3)地下墙的缺点 仅作为临时挡土结构时成本较高;在遇到岩层时成槽困难,施工慢,需先冲孔(槽壁孔5MPa岩石);泥浆易污染环境;对施工机具要求高。4)广州
3、地铁应用地下墙情况 一号线:芳村站、黄沙站、长寿路站、公园前站(节点处);二号线:海珠广场站;三号线:市桥站、厦滘站、沥滘站、赤岗塔站、五山站、天河客运站。,海珠广场站地下连续墙,海珠广场站地下连续墙,海珠广场站地下连续墙,海珠广场站地下连续墙,海珠广场站地下连续墙,三号线市桥站地下连续墙,三号线市桥站地下连续墙,三号线厦滘站地下连续墙,三号线厦滘站地下连续墙,三号线沥滘站地下连续墙,三号线沥滘站地下连续墙,三号线赤岗塔站地下连续墙,三号线赤岗塔站地下连续墙,三号线五山站地下连续墙,三号线五山站地下连续墙,三号线天河客运站地下连续墙,三号线天河客运站地下连续墙,5)地下连续墙的设计要点 槽段宽
4、度 一般为5m或6m,与支撑布置相匹配。当近侧地面荷载较大或周围环境保护要求较高时,可采取高导墙、加大泥浆比重或将槽段宽度减小等措施。,常用接头型式:1直接连接构成接头2使用接头管建成的接头3使用接头箱建成的接头4十字钢板接头5工字钢板接头6用隔板建成的接头7预制构件建成的接头8其它型式接头广州地铁采用了两种接头传统的锁口管接头和工字形钢板接头。黄沙站和长寿站采用锁口管接头,芳村站和公园前站、海珠广场站采用工字形钢板接头。三号线六个车站全采用锁口管接头。从现场的调查情况来,不论是施工的难易程度还是防水效果,工字形钢板均明显优于锁口管接头,但工字形钢板接头用钢量较大。,十字刚性接头:对于软土地基
5、,为保护连续墙的整体刚度,应设置刚性连接接头,常用的刚性接头形式有一字型和十字型穿孔钢板接头。如图3-14。为上海地铁二号线工程常用的钢性接头型式。,墙体套接柔性止水接头型式:广州市区的下卧风化岩较浅,围护墙一般不会发生不均匀沉降,只须考虑水平向的整体刚度,较适合采用墙体套接柔性止水措施的接头型式.I、II 期墙体套接采用凹凸型接头板,中间夹35cm宽的优质塑胶止水带,如图3-13。,为保证止水带真正起到止水效果,施工时必须保证止水带到位、扶正、不脱落,不夹断,并做到接头缝处无泥皮.无沉渣。具体技术措施是:必须保证槽段底部进入不透水的淤积土层,并在预留接头槽条处安上止水带,且在其底部留置2m,
6、以保证接头板上拔时止水带不会跟着起拔,另在接头槽条垂直方向相距2m左右再加一条扶正铁片,以保证止水带与接头板垂直。同时应掌握好接头的起拔时间,起拔速度以及接头板与止水带的夹缝宽度(一般2-3mm)并适当润滑接头板壁,确保止水带不脱落,不夹断。,该接头型式对施工工艺要求高,目前国内的施工单位还在探索阶段,香港地铁已广泛采用。由于该接头止水效果好,墙体水平刚度大,对广州地铁来讲,是较好的接头型式,但限于目前的施工水平,只能用于人工成槽连续墙。,2 人工挖孔桩1)适用地质条件以粘土及粉质粘土为主的土层、半土半石地层。2)优点 施工机具简单,成本低;工作面多,整体施工速度比较快;无泥浆、噪音公害;砼质
7、量保证,并可扩大头和咬合密排防水性能好。3)缺点 人员在桩孔内作业,工作环境恶劣,安全性差;施工抽水容易引起周边地层的变形;软弱地层,容易发生涌泥、涌沙、坍孔等险情。4)广州地铁的应用情况 一号线:55%的车站围护结构采用(10座车站);,鹭江站围护结构布置及地质图,二号线:50%的车站围护采用(11座车站);,晓港站围护桩及配筋图 晓港站围护桩支撑及地质,江南西站人工挖孔桩相切图,纪念堂站围护桩支撑及地质,越秀公园站围护桩支撑及地质,三元里站人工挖孔方桩配筋图,三号线:,珠江新城站人工挖孔桩,珠江新城站人工挖孔桩,体育西站人工挖孔桩,体育西站人工挖孔桩,林和西站人工挖孔桩,林和西站人工挖孔桩
8、,客村站人工挖孔桩,客村站人工挖孔桩,汉溪站人工挖孔桩,汉溪站人工挖孔桩,岗顶站人工挖孔桩,岗顶站人工挖孔桩,华师站人工挖孔桩,华师站人工挖孔桩,5)广东地区限制采用人工挖孔桩的文件,粤建管字200349号文:挖孔开挖工作面以下,有下列情况之一者,不得使用挖孔桩:地基土中分布有厚度超过2m流塑状泥或厚度超过4m的软塑状土;地下水位以下在层厚超过2m的松散、稍密的砂层或层厚超过3m的中密、密实砂层;溶岩地区;有涌水的地质断裂带;地下水丰富,采取措施后仍无法避免边抽水边作业;高压缩性人工杂填土厚度超过5m;工作面3m以下土层中有腐植质有机物、煤层等可能存在有毒气体的土层;孔深超过25m或桩径小于1
9、.2m;没有可靠的安全措施,可能对周围建(构)筑物、道路、管线等造成危害。,6)间隔桩的问题 在稳定性比较好的地层是可行的;桩间暴露的土层:采用喷锚支护或模筑砼;,3 钻(冲)孔灌注桩,1)适用地质条件可在各种软弱地层中采用。2)优点 施工机械化程度高,成孔速度快;施工中无降水和抽水现象,对周边地层影响小;单桩成本较地下连续墙低。3)缺点 普通钻孔桩最小桩间距不宜小于150m;桩间要采用旋喷或摆喷来止水,整体刚度差;排桩为弹性结构,旋喷桩为脆性结构,基坑开挖中,桩间止水效果不好;排桩施工垂直容许偏差1%,也就是15m偏差150mm,挡土和止水结构容易在深处错位。,4)广州地铁应用情况 一号线:
10、农讲所1200的间隔桩,净距400;东山口1200的间隔桩,净距600;二号线:琶洲和磨碟沙的为10001150,东部区间最大为800950;越秀公园由挖孔桩改为冲孔桩1300,纪念堂10001000;,三号线:,番禺广场站钻孔桩,番禺广场站钻孔桩,大石站钻孔桩,大石站钻孔桩,大石盾构始发井,大石盾构始发井,大石盾构始发井,大石盾构始发井,4 土钉墙支护1)适用地质条件以粘土及粉质粘土为主的土层、半土半岩地层;周边环境条件容许。2)优点 节省投资,至少可节省一半;可进行信息化设计与施工,施工速度快;基坑作业空间开阔,无内支撑,主体结构施工快;土钉支护可以和预应力锚杆联合使用。3)缺点 土钉和锚
11、杆需占用基坑周围的地下空间;淤泥、流砂及有大量渗水的地层,不宜采用;土体有较大位移。4)广州地铁的应用情况 一号线:广州东部和折返线17.2m深基坑;二号线:赤岗站(15.76m)、广州火车站(15.6m)、三元里站;,a、赤岗站 土钉施工的关键是要防止地下水从边坡涌出,先在基坑的外围护打两排搅拌桩作为止水帷幕,土钉水平与竖直间距都是1.5m,局部为1.5m1.2m或1.2m1.2m,土钉的钻孔直径为120mm,土钉为级钢筋,一次注浆,注浆压力为0.4Mpa,土钉体注浆材料采用水泥净浆,强度为20Mpa,土钉入射角10,见图;,b、广州火车站,上部土层第一次先喷100mm,安设钢筋网,再喷50
12、mm,下部岩层第一层喷50mm,安设钢筋网,再喷50mm,喷射混凝土为0.8Mpa防水混凝土,强度为C20,在混凝土喷射过程中设置的钢筋网8200200的钢筋网和一层二级钢筋16 15001500 的加强钢筋网,钢筋网搭接长度为300mm,加强钢筋网采用焊接连接。,火车站基坑共分三个区,其中在南北两端(A、C区)采用人工挖孔桩,支撑采用预应力水泥砂浆锚杆。桩长20m,桩径1000,顶部加冠梁。锚杆用钢绞线,长21米,锚杆的钻孔直径150,锚杆的锚固段长10m,自由段长7m。,c、三元里站人工挖孔桩的上部采用土钉墙围护,5)土钉支护用于地铁车站基坑开挖的可行性 国外用于直立基坑的土钉支护最深达2
13、1m;北京庄胜广场基坑16.2m,万富大厦16.8m,通港大厦17m等;广州地区大量采用:东风路安倍工程1618m,中旅大厦1617m。,林和西站 土钉墙支护,林和西站 土钉墙支护,汉溪站 土钉墙支护,汉溪站 土钉墙支护,广州东站 土钉墙支护,广州东站 土钉墙支护,四号线大小区间盾构始发井 基坑深20m,四号线大小区间盾构始发井 基坑深22m,6)土钉支护和复合土钉支护,与连续墙和柱列式灌注桩挡墙不同,土钉支护的喷射混凝土面层并不是支护结构的主体,而且整个支护是与基坑挖土过程同时完成的。常用的土钉是钻孔注浆钉,以变形钢筋为中心体。在成孔困难的松散砂土、软粘土中也可击入钢管作为土钉体然后注浆。不
14、注浆的击入钉可用角钢作钉体,它能立即起到稳定土体的作用。土钉支护的施工速度快、用料省、造价低;与桩墙支护相比,工期常可缩短一半以上,成本大概只及其三分之一。,密集的土体群体与周围土体组成一整体,土钉在其中兼具加筋的作用,因此,土钉与土体之间的界面粘着力使其受拉并起作用,因而不同于主动压紧的预应力锚杆。土钉支护过程中可以根据现场的监测资料反馈进行信息化施工,这样使土钉施工的基坑能够保持相当高的安全可靠性。为了严格控制支护变形和在不良地层中施工,土钉支护可以和预应力锚杆联合使用,其特点是边开挖、边支护,但锚杆从安装到施加预应力需要一个过程,而土钉可以较为迅速的发挥作用。土钉还可与锚杆与微型桩三者组
15、成复合土钉支护,可以解决多数地质条件下大型基坑支护的需要。但土钉和锚杆必须占据周围边地下空间,这样使其使用受到限制。,5.水泥土墙和水泥土地锚复合支护1)广州地铁二号线新港东站 基坑围护结构采用双排加筋650mm搅拌水泥土桩与预应力水泥土地锚相结合。,新港东站南面深基坑开挖至14.5m时底板施工现场(工字钢插在旋喷搅拌桩里),4)拱形排桩或连续墙成拱支护应符合下列规定:a)对排桩成拱支护结构,桩与桩之间应交接。b)计算拱型挡土结构的受力及变形时,可将整个拱的刚度作为计算刚度。c)对排桩形成的拱型支护结构,桩顶应设冠梁。d)对拱型支护结构,应保证拱支座稳定,拱支座位移不应大于30mm。,图2.6
16、.4 拱形支护结构型式,7 地铁车站支护结构与内衬的经济分析广州地铁一、二号线工程地下车站的明挖结构型式,共分为五种类型:叠合墙结构、刚性结构、复(重)合墙结构、单一墙结构和分离式结构。叠合墙结构和刚性结构的计算模式为共同变形法和协调变形法,以受力机理和计算结构来分析,排桩与内衬协调变形,共同分担水土压力,而内衬内力较小,它们为同一种类型的结构,一般内衬厚度为0.40.5m。内衬与排桩的结合,结构刚度较大,可利用桩侧摩阻力和桩身重量来抗浮。但这类结构型式难以做到内衬砼不开裂和完全不渗水。广州地铁二号线工程大量采用了复(重)合墙结构形式:围护结构与内衬紧贴在一起但中间夹防水隔离层,围护桩与内衬不
17、能完全协调变形,故内衬将比叠合墙结构的内衬分担大45倍的内力,内衬外侧最大配筋率达1.75%(内衬厚度与叠合墙一致均为500时),故一般内衬厚度为0.50.6m。不考虑围护结构参与主体结构的受力模式为分离式结构,主体结构内侧墙厚度一般为0.70.8m。,三、围护结构入土深度 1、墙前受无限土体作用时插入深度的确定 2、广州地区建筑基坑支护技术规定(98-02)3、围护结构嵌固深度的经验 4、围护结构的桩顶标高和嵌入深度问题,1、墙前受无限土体作用时插入深度的确定 插入深度与车站开挖深度、地质条件和支撑道数、刚度有关。支撑道数越 多,插入深度越浅。广州地铁两层车站一般采用二三道支撑是安全、经济、
18、合理的。广州地铁车站底板大部分座落在风化岩层上,既非土,也非完整基岩。在土层中,主要是基坑开挖后外侧土柱超载造成基坑内土体被隆起破坏。而岩层中主要是基坑下岩体强度不足造成结构倾覆破坏。围护结构按以下方法来确定插入深度:(以两层地下站为例),1)根据山肩帮男近似解法计算 各地层中插入深度表,2)根据弹性有限元进行验算 弹性有限元验算结果表,插入深度验算结果,均满足要求。,3)围护结构在基岩中的插入深度根据公路桥涵地基与基础设计规范(JTJ024一85)嵌入桩入岩深度计算公式印证。嵌入岩石深度验证结果表,由于本公式适用于新鲜岩层,而车站区域范围内岩层风化严重,软化系数较高,故应有足够的安全富裕量。
19、,2、广州地区建筑基坑支护技术规定(98-02):1)当有经验且满足下列条件之一时,可不验算嵌固深度:a 墙体入中风化岩不小于1.5m或入微风化岩不小于1倍墙厚;b 有两道或以上的支撑;c 满足内力与变形计算的要求。2)对同时承受水平和竖向荷载的地下连续墙,嵌固深度设计值应取下列三者中的最大值:a 按水平荷载要求计算的支护结构嵌固深度设计值;b 按竖向荷载要求计算的支护结构嵌固深度设计值;c 考虑墙底止水要求的入土深度设计值。,3、围护结构嵌固深度的经验:围护结构插入土层中,在确定其入土深度时,必须进行墙体的抗滑动、抗倾覆和整体稳定性以及墙前基底土体的抗隆起和抗管涌稳定性验算;当围护结构插入岩
20、层中时,其嵌入深度需根据基坑开挖深度、支撑体系、岩层风化程度,进行稳定和变形计算、并参照类似工程予以确定。一般二层车站在不同地层中三道支撑围护结构插入深度见下表各地层中插入深度表,4、围护结构的桩顶标高和嵌入深度问题 在设计中要考虑围护桩顶一般情况下施工后难以凿掉,而规划部门要求道路覆土不小于2米或3米,重合墙结构还应利用围护桩顶做压顶梁来抗浮。因此桩顶标高不应太高,设计中必须认真考虑其标高。由于广州的地质条件普遍为上软下硬。围护桩一般进入岩层。嵌固深度除考虑防水抗渗要求外,地铁工程为多支点的支护结构且基坑较深,因此不一定要取0.2H的要求。当有经验且有二道或以上的支撑时,可不验算嵌固深度,因
21、此嵌固深度普遍可以减少,节省投资,加快施工进度。,四、地铁车站深基坑的钢支撑设计1、内支撑的种类2、钢支撑的承载力分析3、钢支撑刚度对基坑位移的影响分析 4、钢筋混凝土支撑应符合的要求5、钢腰梁应符合的构造规定6、支撑体系设计要点7、斜支撑设计,1、内支撑的种类 基坑内支撑按其材料可以有钢管支撑、型钢支撑、钢筋混凝土支撑、钢和钢筋混凝土的组合支撑等种类。内支撑,不占用基坑外侧地下空间,防水优于锚杆。钢支撑杆件的标准化、工具化,便于安装和拆除,可以施加预应力以合理地控制基坑变形,架设速度较快,可以回收再利用。钢筋混凝土支撑的整体刚度好、变形小、安全可靠,但施工制作时间长,拆除比较繁重,回收利用率
22、低。支撑系统应根据不同环境条件因地制宜设置。,N,19.8m,5kN q,2、钢支撑的承载力分析 广州地铁明挖车站采用钢支撑。一般采用600壁厚10、12mm的圆钢管,其计算如图(两端铰支):,5kN考虑可能加在钢支撑上的施工荷载;为压弯构件。由钢支撑所能承受的压力N值来决定钢支撑的数量及布设。钢支撑固定端和活动端的构造是不相同的。活动端为方便给钢支撑预加轴向压力,即实际情况可能是一端铰支、一端固定。杆端约束越强,临界力越大。,N,3、钢支撑刚度对基坑位移的影响分析,(图中K0为基本刚度值,U0、M0分别为使用基本刚度时,得出的最大位移)。随着支撑刚度的增加,支护结构的最大位移及弯距均下降,其
23、中:位移下降比较明显。与基本刚度值K0相比,当支撑刚度增大到10倍(接近于混凝土支撑的刚度)时,支护结构的最大位移下降了2/3以上,而最大弯距下降了1/3;可以看出,当支撑刚度在3倍基本刚度值K0范围内变化时,其影响比较明显,这时对最大位移的影响已达到50%,以后则作用下降。一般对于铰支形式的支撑而言,支撑刚度的影响具有一定的范围,在此范围之外再增加支撑刚度,作用已不大。,4、钢筋混凝土支撑应符合下列要求:1)钢筋混凝土支撑体系应在同一平面内整体浇注,基坑平面转角处的腰梁连接点应按刚节点设计;2)混凝土支撑的截面高度宜不小于其竖向平面内计算跨度的l/20;腰梁的截面高度(水平向尺寸)不宜小于水
24、平方向计算跨度的1/8,腰梁的宽度宜大于支撑的截面高度。3)混凝土支撑的纵向钢筋直径不宜小于16,沿截面四周纵筋的间距不宜大于200mm。箍筋直径不应小于8,间距不宜大于250mm。支撑的纵向钢筋在腰梁内的锚固长度宜大于30倍钢筋直径。4)腰梁(包括冠梁)纵向钢筋宜直通,直径不宜小于16。,5、钢腰梁应符合下列构造规定:1)安装钢腰梁前,应在围护结构上设置安装牛腿。安装牛腿可用角钢或钢筋构架直接焊接在围护墙的主筋或预埋件上。2)钢腰梁与混凝土围护墙之间应预留宽度100mm的水平通长空隙,腰梁安装定位后,用强度等级不低于C30的细石混凝士充填。3)当采用水平斜支撑(如角撑)时,腰梁侧面上应设置水
25、平方向牛腿或其它构造措施以承受支撑和腰梁之间的剪力;4)钢支撑和钢腰梁连接时,支撑端头设置厚度不小于10mm的钢板作封头端板,端板与支撑和腰梁侧面全部满焊,必要时可增设加劲肋板;5)钢腰梁构件拼接时,接头承载力不应低于构件的截面承载力。支护结构拐角处,应做成刚性连接。,6、支撑体系设计要点:内支撑设计应充分吸取广州地铁工程中的成功经验:1)基坑平面形状有向内凸出的阳角时,应在阳角的两侧同时设置支撑点;2)一般25米以内的600钢支撑无需加中间立柱(一端固定、另一端铰接)。3)钢支撑设计的关键是支撑预加轴力不宜大于支撑力设计的0.40.6倍;4)为了控制基坑变形,第一道支撑是关键;5)为方便施工
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 地铁 基坑 支护 设计 讲稿
链接地址:https://www.31ppt.com/p-6454493.html