变量数列分析.ppt
《变量数列分析.ppt》由会员分享,可在线阅读,更多相关《变量数列分析.ppt(114页珍藏版)》请在三一办公上搜索。
1、第五章 变量数列分析,一名统计学家遇到一位数学家,统计学家调侃数学家说道:“你们不是说若且,则吗!那么想必你若是喜欢一个女孩,那么那个女孩喜欢的男孩你也会喜欢喽!?”数学家想了一下反问道:“那么你把左手放到一锅一百度的开水中,右手放到一锅零度的冰水里想来也没事吧!因为它们平均的温度不过是五十度而已!”,统计学家与数学家,如果你的腳已經踩在爐子上,而頭卻在冰箱裡,統計學家會告訴你,平均而言,你相當舒服。,调侃统计学家,5.1 集中趋势的测定,一、集中趋势的涵义 二、平均指标的种类及计算方法,83名女生的身高,分布的集中趋势、中心数值,统计学第五章 变量数列分析,统计学第五章 变量数列分析,5.1
2、 集中趋势的测定,一、集中趋势的涵义 二、平均指标的种类及计算方法,二、平均指标的种类及计算方法,算术平均数 调和平均数 几何平均数 中位数 众数,基本形式:,例:,直接承担者,注意区分算术平均数与强度相对数,算术平均数,统计学第五章 变量数列分析,式中:为算术平均数;为总体单位总数;为第 个单位的标志值。,算术平均数的计算方法,统计学第五章 变量数列分析,平均每人日销售额为:,算术平均数的计算方法,统计学第五章 变量数列分析,式中:为算术平均数;为第 组的次数;为组数;为第 组的标志值或组中值。,算术平均数的计算方法,统计学第五章 变量数列分析,【例】某企业某日工人的日产量资料如下:,计算该
3、企业该日全部工人的平均日产量。,算术平均数的计算方法,统计学第五章 变量数列分析,解:,算术平均数的计算方法,统计学第五章 变量数列分析,分析:,起到权衡轻重的作用,算术平均数的计算方法,统计学第五章 变量数列分析,决定平均数的变动范围,算术平均数的计算方法,统计学第五章 变量数列分析,邱东教授对权数的定义:,统计学第五章 变量数列分析,第一,权数的数量形式可以是多种多样的,可以是绝对数,也可以是相对数;可以是结构相对数,也可以是比例相对数;可以取正数,甚至有时也可以取负数。第二,权数尽管可以以绝对数或比例相对数的形式出现,但权数的实质是结构相对数。第三,权数是用来衡量诸内部因素在总体中重要程
4、度的,由于人们是从不同方面来把握重要程度的,因而这个定义就不是把权数仅仅限于频率和同度量因素这一狭窄的范围内。,权数是以某种数量形式对比、权衡被评价事物总体中诸因素相对重要程度的量值。,统计学第五章 变量数列分析,曾宪报在其博士学位论文统计权数论中提出了他认为“简洁性好、概括性强”、“关于权数的最新认识”的定义:,权数是衡量系统内诸要素相对重要程度的一组数值。,统计学第五章 变量数列分析,权数与加权,统计学第五章 变量数列分析,权数与加权,统计学第五章 变量数列分析,权数与加权,统计学第五章 变量数列分析,权数与加权,算术平均数的计算取决于变量值和权数的共同作用:变量值决定平均数的范围;权数则
5、决定平均数的位置.,变量值与其算术平均数的离差之和衡等于零,即:变量值与其算术平均数的离差平方和为最小,即:,算术平均数的主要数学性质,统计学第五章 变量数列分析,离差的概念,-1,-1,-2,1,3,统计学第五章 变量数列分析,统计学第五章 变量数列分析,思考题,比特啤酒公司雇用了468名员工,其中有56名管理人员,130名行政和技术人员,其余282人是工人。这三组人的周平均工资分别是500英镑、300英镑和200英镑。财务主管希望计算全体员工的平均工资。,?,统计学第五章 变量数列分析,正确的计算方法,二、平均指标的种类及计算方法,算术平均数 调和平均数 几何平均数 中位数 众数,【例】设
6、X=(2,4,6,8),则其调和平均数可由定义计算如下:,再求算术平均数:,求各标志值的倒数:,,再求倒数:,是总体各单位标志值倒数的算术平均数的倒数,又叫倒数平均数,调和平均数harmean(harmonic mean),统计学第五章 变量数列分析,A.简单调和平均数,适用于总体资料未经分组整理、尚为原始资料的情况,式中:为调和平均数;为变量值 的个数;为第 个变量值。,调和平均数的计算方法,统计学第五章 变量数列分析,B.加权调和平均数,适用于总体资料经过分组整理形成变量数列的情况,式中:为第 组的变量值;为第 组的标志总量。,调和平均数的计算方法,统计学第五章 变量数列分析,当已知各组变
7、量值和标志总量时,作为算术平均数的变形使用。,因为:,调和平均数的应用,统计学第五章 变量数列分析,统计学第五章 变量数列分析,调和平均数的用途:作为独立意义上的平均数使用基本上没有用途。作为算术平均数的变形使用是其常见的用法。但此时已经不能称为调和平均数,只能称其为调和平均方法。,计算该企业该日全部工人的平均日产量。,调和平均数的应用,统计学第五章 变量数列分析,即该企业该日全部工人的平均日产量为12.1375件。,调和平均数的应用,统计学第五章 变量数列分析,求解比值的平均数的方法,由于比值(平均数或相对数)不能直接相加,求解比值的平均数时,需将其还原为构成比值的分子、分母原值总计进行对比
8、,设比值,则有:,统计学第五章 变量数列分析,求解比值的平均数的方法,统计学第五章 变量数列分析,【例A】某季度某工业公司18个工业企业产值计划完成情况如下:,计算该公司该季度的平均计划完成程度。,求解比值的平均数的方法,统计学第五章 变量数列分析,【例A】某季度某工业公司18个工业企业产值计划完成情况如下:,计算该公司该季度的平均计划完成程度。,求解比值的平均数的方法,应采用加权算术平均数公式计算,统计学第五章 变量数列分析,【例B】某季度某工业公司18个工业企业产值计划完成情况如下(按计划完成程度分组):,计算该公司该季度的平均计划完成程度。,求解比值的平均数的方法,统计学第五章 变量数列
9、分析,【例B】某季度某工业公司18个工业企业产值计划完成情况如下(按计划完成程度分组):,计算该公司该季度的平均计划完成程度。,求解比值的平均数的方法,应采用平均数的基本公式计算,统计学第五章 变量数列分析,二、平均指标的种类及计算方法,算术平均数 调和平均数 几何平均数 中位数 众数,统计学第五章 变量数列分析,式中:为几何平均数;为变量值的个数;为第 个变量值。,几何平均数的计算方法,统计学第五章 变量数列分析,【例】某流水生产线有前后衔接的五道工序。某日各工序产品的合格率分别为95、92、90、85、80,求整个流水生产线产品的平均合格率。,分析:,设最初投产100A个单位,则第一道工序
10、的合格品为100A0.95;第二道工序的合格品为(100A0.95)0.92;第五道工序的合格品为(100A0.950.920.900.85)0.80;,统计学第五章 变量数列分析,因该流水线的最终合格品即为第五道工序的合格品,故该流水线总的合格品应为 100A0.950.920.900.850.80;则该流水线产品总的合格率为:,即该流水线总的合格率等于各工序合格率的连乘积,符合几何平均数的适用条件,故需采用几何平均法计算。,统计学第五章 变量数列分析,因该流水线的最终合格品即为第五道工序的合格品,故该流水线总的合格品应为 100A0.950.920.900.850.80;则该流水线产品总的
11、合格率为:,即该流水线总的合格率等于各工序合格率的连乘积,符合几何平均数的适用条件,故需采用几何平均法计算。,统计学第五章 变量数列分析,思考,若上题中不是由五道连续作业的工序组成的流水生产线,而是五个独立作业的车间,且各车间的合格率同前,又假定各车间的产量相等均为100件,求该企业的平均合格率。,几何平均数的计算方法,统计学第五章 变量数列分析,因各车间彼此独立作业,所以有 第一车间的合格品为:1000.95;第二车间的合格品为:1000.92;第五车间的合格品为:1000.80。则该企业全部合格品应为各车间合格品的总和,即总合格品=1000.95+1000.80,几何平均数的计算方法,分析
12、:,统计学第五章 变量数列分析,不再符合几何平均数的适用条件,需按照求解比值的平均数的方法计算。又因为,应采用加权算术平均数公式计算,即,统计学第五章 变量数列分析,式中:为几何平均数;为第 组的次数;为组数;为第 组的标志值或组中值。,几何平均数的计算方法,统计学第五章 变量数列分析,【例】某金融机构以复利计息。近12年来的年利率有4年为3,2年为5,2年为8,3年为10,1年为15。求平均年利率。,设本金为V,则至各年末的本利和应为:,第1年末的本利和为:,第2年末的本利和为:,第12年末的本利和为:,分析:,统计学第五章 变量数列分析,则该笔本金12年总的本利率为:,即12年总本利率等于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变量 数列 分析

链接地址:https://www.31ppt.com/p-6450493.html