化学发光分析.ppt
《化学发光分析.ppt》由会员分享,可在线阅读,更多相关《化学发光分析.ppt(70页珍藏版)》请在三一办公上搜索。
1、第十二章 分子发光分析Chapter Twelve:Molecular Luminescence Analysis,分子荧光:Fluorescence分子磷光:Phosphorescence,第一节 分子荧光和磷光molecular fluorescence and phosphorescence第二节 分子荧光和磷光分析法molecular fluorescence and phosphorescence analysis第三节 分子发光分析chemiluminescence analysis,(对光的吸收),第一节 分子荧光和磷光,历史:第一次记录荧光现象的是16世纪西班牙的内科医生和植物
2、学家N.Monardes,他于1575年提到,在含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现出极为可爱的天蓝色。以后逐步有一些学者也观察和描述过荧光现象,但对其本质及含义的认识都没有明显的进展。直到1852年,对荧光分析法具有开拓性工作的Stokes在考察奎宁和绿色素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍为长些,而不是由光的漫反射引起的,从而导入荧光是光发射的概念,并提出了“荧光”这一术语,他还研究了荧光强度与荧光物质浓度之间的关系,并描述了在高浓度或某些外来物质存在时的荧光猝灭现象。可以说,他是第一个提出应用荧光作为分析手段的人。1867年,G
3、oppelsrde应用铝一桑色素配位化合物的荧光测定铝,这是历史上首次进行的荧光分析工作。,一、荧光与磷光的产生过程 luminescence process of molecular fluorescence phosphorescence,由分子结构理论,主要讨论荧光及磷光的产生机理。1.分子能级与跃迁 分子能级比原子能级复杂;在每个电子能级上,都存在振动、转动能级;基态(S0)激发态(S1、S2、激发态振动能级):吸收特定频率的辐射;量子化;跃迁一次到位;激发态基态:多种途径和方式(能级图);速度最快、激发态寿命最短的途径占优势;第一、第二、电子激发单重态 S1、S2;第一、第二、电子激
4、发三重态 T1、T2;,每个分子中都具有一系列严格分立相隔的能级,称为电子能极,而每个电子能级中又包含有一系列的振动能级和转动能级。分子中电子的运动状态除了电子所处的能级外,还包含有电子的多重态,用M=2S+1表示,S为各电子自旋量子数的代数和,其数值为0或1。根据Pauli不相容原理,分子中同一轨道所占据的两个电子必须具有相反的自旋方向,即自旋配对。若分子中所有电子都是自旋配对的,则S=0,M=1,该分子便处于单重态(或叫单重线),用符号S表示。大多数有机化合物分子的基态都处于单重态。基态分子吸收能量后,若电子在跃迁过程中,不发生自旋方向的变化,这时仍然是M=1,分子处于激发的单重态;如果电
5、子在跃迁过程中伴随着自旋方向的变化,这时分子中便具有两个自旋不配对的电子,即S=1,M=3,分子处于激发的三重态,用符号T表示。,2.电子激发态的多重度,电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1);处于分立轨道上的非成对电子,自旋平行要比自旋配对更稳定些(洪特规则),三重态能级比相应单重态能级低;大多数有机分子的基态处于单重态;,S0T1 禁阻跃迁;通过其他途径进入(见能级图);进入的几率小;,3.激发态基态的能量传递途径,电子处于激发态是不稳定状态,返回基态时,通过辐射跃迁(发光)和无辐射跃迁等方式失去能量;,激发态停留时间短、返回速度快的途径,发生的几率大,发光
6、强度相对大;荧光:10-710-9 s,第一激发单重态的最低振动能级基态;磷光:10-4100s;第一激发三重态的最低振动能级基态;,其中S0、S1和S2分别表示分子的基态、第一和第二电子激发的单重态;T1和T2则分别表示分子的第一和第二电子激发的三重态。V=0、1、2、3、表示基态和激发态的振动能级。,非辐射能量传递过程:,振动弛豫(Vibration relaxation,简写为VR):当分子吸收光辐射后可能从基态的最低振动能级(V=0)跃迁到激发单重态Sn(如图中S1、S2)的较高振动能级上。然后,在液相或压力足够高的气相中,分子间的碰撞几率很大,分子可能将过剩的振动能量以热的形式传递给
7、周围环境,而自身从激发态的高振动能级跃迁至该电子能级的最低振动能级上,这个过程称为振动弛豫。发生振动弛豫的时间为1012s数量级。内转换(Internal conversion,简写为IC):当高电子能级中的低振动能级与低电子能级中的高振动能级发生重叠时,常发生电子从高电子能级以无辐射跃迁形式转移至低电子能级。电子可以通过振动能级的重叠从S2跃迁至S1,或从T2跃迁至T1。这个过程称为内部转移。内部转移的时间为1011s1013s数量级。振动弛豫及内部转移的速率比由高激发态直接发射光子的速率快得多,所以,分子吸收辐射能后不管激发到哪一个激发单重态,都能通过振动弛豫及内部转移而跃迁到最低(第一)
8、激发单重态的最低振动能级。,外转换(External convertion,EC):激发态分子与溶剂分子或其它溶质分子相互碰撞,并发生能量转移的非辐射跃迁称为外部转移。外部转移能使荧光或磷光的强度减弱甚至消失,这种现象称为“猝灭”或“熄灭”。系间跨越(Intersystem Crossing,ISC):指不同多重态之间的无辐射跃迁过程,它涉及到受激发电子自旋状态的改变。如由第一激发单重态S1跃迁至第一激发三重态T1,使原来两个自旋配对的电子不再配对。这种跃迁是禁阻的(不符合光谱选律),但如果两个能态的能层有较大重叠时,如中S1的最低振动能级与T1的较高振动能级重叠,就有可能通过自旋一轨道耦合等
9、作用实现这一跃迁。系间跨跃的速度较慢,经历的时间较长。,辐射能量传递过程:,荧光发射(Fluorescence emission,FE):电子由第一激发单重态的最低振动能级基态(多为 S1 S0跃迁),发射波长为 2的荧光;发射荧光的能量比分子吸收的能量小,波长长(为什么?);第一激发单重态最低振动能级的平均寿命约为109104s,因此荧光寿命也在这一数量级。2 2 1;磷光发射(Phosphorescence emission,PE):激发态的电子经系间跨跃后到达激发三重态,经过迅速的振动弛豫而跃迁至第一激发三重态的最低振动能级,然后以辐射形式跃迁回基态的各振动能级,这个过程为磷光发射。磷光
10、发射的跃迁仍然是自旋禁阻的,所以发光速度很慢。磷光的寿命为104100s。因此,外光源照射停止后,磷光仍可持续一短时间。由于经过系间跨跃及T1 中振动弛豫丢失了一部分能量,所以磷光波长比荧光波长要长,即 3 2。,延迟荧光 T1还可能通过热激发而重新跃回S1 即T1 S1,然后再由S1经辐射跃迁回S0,即S1S0,发出荧光,这种荧光称为延迟荧光,其寿命与磷光相近,但波长比磷光短。,一、激发(吸收)光谱与荧光(磷光)光谱(发射)excitation spectrum and fluore-scence spectrum,1.荧光(磷光)的激发光谱曲线 固定测量波长(选最大发射波长),化合物发射的
11、荧光(磷光)强度与照射光波长的关系曲线(图中曲线I)。,激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大;,荧光和磷光均属于光致发光,所以都涉及到两种辐射,即激发光(吸收)和发射光,因而也都具有两种特征光谱,即激发光谱和发射光谱。它们是荧光和磷光定性和定量分析的基本参数及依据。照射光波长如何选择?,第二节 分子荧光和磷光分析法,2.荧光光谱(或磷光光谱),固定激发光波长(选最大激发波长),化合物发射的荧光(或磷光强度)与发射光波长关系曲线(图中曲线II或III)。,通过激发光谱,选择最佳激发波长发射荧光(磷光)强度最大的激发光波长,常用ex表示。通过发射光谱选择最佳的发射波长发射荧光(
12、磷光)强度最大的发射波长,常用em表示。磷光发射波长比荧光来得长,3.激发光谱与发射光谱的关系,a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比激发光谱的长,振动弛豫消耗了能量。b.发射光谱的形状与激发波长无关;荧光激发光谱的形状与发射波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如能级图 2,1),产生不同吸收带,但均回到第一激发单重态的最低振动能级再跃迁回到基态,产生波长一定的荧光(如 2)c.镜像规则 通常荧光发射光谱与它的吸收光谱(与激发光谱形状一样)成镜像对称关系。,镜像规则的解释,基态上的各振动能级分布与第一激发态上的各振动能级分布类似,假如吸收时
13、由S0的V=0与第一激发态S1的V=2 之间的跃迁几率最大(即强度最大),那么在荧光发射时,由S1的V=0跃回S0的V=2的几率也应该最大,如图所示。基于上述原因,荧光发射光谱与吸收光谱之间显现镜像对称关系,200,250,300,350,400,450,500,荧光激发光谱,荧光发射光谱,nm,蒽的激发光谱和荧光光谱,二、荧光的产生与分子结构的关系 relation between fluorescence and molecular structure,1.分子产生荧光必须具备的条件(1)具有合适的结构;a.具有-电子跃迁类型的结构 b.具有大的共轭键结构(2)具有一定的荧光量子产率。荧光
14、量子产率():,荧光量子产率与激发态能量释放各过程的速率常数有关,如外转换过程速度快,不出现荧光发射;,2.化合物的结构与荧光,(1)跃迁类型:*的荧光效率高,系间跨越过程的速率常数小,有利于荧光的产生;(2)共轭效应:提高共轭度有利于增加荧光效率并产生红移(3)刚性平面结构:可降低分子振动,减少与溶剂的相互作用,故具有很强的荧光。如荧光素和酚酞有相似结构,荧光素有很强的荧光,酚酞却没有。又如芴与联二苯,由于芴中的亚甲基使分子的刚性平面增加,导致两者在荧光性质上的显著差别,前者荧光产率接近于1,后者仅为0.18。萘与维生素A都具有5个共轭键,而前者为平面结构,后者为非刚性结构,因而前者的荧光强
15、度为后者的5倍。,(4)取代基效应:芳环上有供电基,使荧光增强。影响规律多出自实验总结和推测,取代基的影响主要有以下几个方面:1、给电子取代基使荧光加强2、吸电子基团使荧光减弱而磷光增强 3、取代基位置的影响 取代基位置对芳烃荧光的影响通常为:邻位,对位取代者增强荧光,间位取代者抑制荧光(CN取代基例外)。取代基的空间阻碍对荧光也有明显的影响。如化合物萘环上的8位引入SO3基时,由于空间阻碍使NR2与萘之间的键扭转而减弱了平面构型,影响了p共轭,导致荧光的减弱。同样,1,2二苯乙烯的反式异构体是强荧光物质,而顺式异构体不发射荧光。4、重原子效应 荧光体取代上重原子后,荧光减弱,而磷光往往相应增
16、强。所谓重原子取代,一般指的是卤素(Cl、Br和I)原子取代,三、影响荧光强度的因素 relation between fluorescence and molecular structure,影响荧光强度的外部因素1.溶剂的影响 除一般溶剂效应外,溶剂的极性、氢键、配位键的形成都将使化合物的荧光发生变化;2.温度的影响 荧光强度对温度变化敏感,温度增加,外转换去活的几率增加。3.溶液pH 对酸碱化合物,溶液pH的影响较大,需要严格控制;,4.内滤光作用和自吸现象,自吸现象:化合物的荧光发射光谱的短波长端与其吸收光谱的长波长端重叠,产生自吸收;如蒽化合物。,内滤光作用:溶液中含有能吸收激发光或
17、荧光物质发射的荧光,如色胺酸中的重铬酸钾;,5.溶液荧光的猝灭,荧光的猝灭(熄灭)一词,从广义上说,指的是任何可使某给定荧光物质的荧光强度降低的作用,或者任何可使荧光强度不与荧光物质的浓度呈线性关系的作用。从狭义上说,指的是荧光物质分子与溶剂分子或其它溶质分子之间的相互作用,导致荧光强度降低的现象。与荧光物质发生相互作用而使荧光强度降低的物质,称为猝灭剂。荧光猝灭的形式很多,机理也比较复杂。主要有如下几种类型:,碰撞猝灭生成化合物的猝灭能量转移猝灭 氧的猝灭 转入三重态的猝灭 荧光物质的自猝灭,四、荧光分析仪 荧光分析仪器与紫外-可见分光光度计的基本组成部件相同,即有:光源、单色器、样品池、检
18、测器和记录显示装置五个部分。,1、仪器结构流程,测量荧光的仪器主要由五个部分组成:激发光源、样品池、双单色器系统、检测器、记录显示系统。特殊点:有两个单色器,光源与检测器通常成直角。,基本流程如图:单色器:选择激发光波长的第一单色器和选择发射光(测量)波长的第二单色器;光源:氙灯、钨卤素灯和高压汞灯,染料激光器(可见与紫外区)检测器:光电倍增管。,仪器光路图,仪器框图,该型仪器可进行荧光、磷光和发光分析;,同步扫描技术,根据激发和发射单色器在扫描过程中彼此间所保持的关系,同步扫描可分为固定波长差()和固定能量差及可变波长三种;,同步扫描技术可简化光谱,谱带变窄,减少光谱重叠,提高分辨率;如图。
19、合适的可减少光谱重叠;酪氨酸和色氨酸的荧光激发光谱相似,发射光谱严重重叠,但60nm时,只显示色氨酸的特征光谱,实现分别测定,可获得三维光谱图的仪器,可获得激发光谱与发射光谱同时变化时的荧(磷)光光谱图,磷光检测,荧光计上配上磷光测量附件即可对磷光进行测量(采用低温磷光分析法,即试样溶液需要低温冷冻)。在有荧光发射的同时测量磷光。,测量方法:(1)通常借助于荧光和磷光寿命的差别,采用磷光镜的装置将荧光隔开。(2)采用脉冲光源和可控检测及时间分辨技术。室温测量时,不需要杜瓦瓶(盛有液氮)。,五、荧光分析方法与应用,1.特点(1)灵敏度高 比紫外-可见分光光度法高24个数量级 检测下限:0.10.
20、001 gmL1 其一,荧光强度正比于入射光的强度,所以增大光源的强度可以提高灵敏度,降低检测限;其二,荧光的测量是在激发光的垂直方向检测的,即在暗背景中检测,所以只要较好地消除杂散光,采用较灵敏的检测器,很微弱的荧光都可以检测,所以检测限较低。(2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱;(3)试样量少 缺点:应用范围小。,用检测限来表示荧光法的灵敏度,在实际工作中是比较直观和方便的。荧光分析法的检测限可以有两种表示方法:一是以喹宁表示,在0.05molL1硫酸中,喹宁的荧光峰为450nm,当喹宁溶液很稀(如0.05gL1)时,溶剂的拉曼峰所造成的对喹宁荧光信号的噪声已相当显著
21、。因此人们常以此时喹宁信号与仪器噪声之比的喹宁浓度定为该仪器的检测灵敏度。多数仪器的检测灵敏度为0.05gL1喹宁,有些灵敏度高的仪器可达0.005gL1喹宁;二是以水的拉曼光信噪比表示,当水分子被激发时,水分子蒙受暂时的畸变,在极短的时间内(10121015s),会向各个方向发射出与激发光波长相等的瑞利光和波长略长的拉曼光。通过测量拉曼光的信噪比可以衡量仪器的检测灵敏度。由于纯的水易得,用同一波长的光激发水分子所产生的拉曼光波长一样,便于检测,所以用拉曼光信噪比表示仪器的灵敏度已为较多的产家所采用。,常规分析应用:定性分析:f;ex;em;峰形等 定量检测:F=KI0fC 其它(略)高端生化
22、研究:分子相互作用研究;代谢动力学跟踪;显微成像(物理迁移与化学衍化的原位“显迹”),2.定量依据与方法,(1)定量依据 荧光强度 If正比于吸收的光量Ia和荧光量子效率:If=Ia 由朗-比耳定律:Ia=I0(1-10-l c)If=I0(1-10-l c)=I0(1-e-2.3 l c)浓度很低时,将括号项近似处理后:If=2.3 I0 l c=Kc,(2)定量方法,标准曲线法:配制一系列标准浓度试样测定荧光强度,绘制标准曲线,再在相同条件下测量未知试样的荧光强度,在标准曲线上求出浓度;比较法:在线性范围内,测定标样和试样的荧光强度,比较;,3.荧光分析法的应用,(1)无机化合物的分析 与
23、有机试剂配合物后测量;可测量约60多种元素。铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法;氟、硫、铁、银、钴、镍采用荧光熄灭法测定;铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测定;铬、铌、铀、碲采用低温荧光法测定;铈、铕、锑、钒、铀采用固体荧光法测定(2)生物与有机化合物的分析,4、磷光分析法的应用,(1)稠环芳烃分析 采取固体表面室温磷光分析法快速灵敏测定稠环芳烃和杂环化合物(致癌物质);见表(2)农药、生物碱、植物生长激素的分析 烟碱、降烟碱、新烟碱,2,4-D等分析 检测限0.01 g/cm-3(3)药物分析和临床分析 见表,第三节 化学发光 由于化学反应产生电子能级处于激发态的物质,后
24、者通过跃迁释放能量产生光子,从而导致的发光现象。,化学发光分析仪 美国MD公司 型号 Lmax II/II384 检测器:光子计数器,按化学反应类型,酶促化学发光:辣根过氧化物酶系统 碱性磷酸酶系统 黄嘌呤氧化酶系统非酶促化学发光:吖啶酯系统 草酸酯系统 三价铁-鲁米诺系统,闪光(Flash):,按发光持续时间,发光时间在数十分钟以上,如:HRP-Luminol系统 AP-AMPPD系统 黄嘌呤氧化酶系统无须原位进样、以速率法测量。,发光时间在数秒内,如吖啶酯以原位进样(In Situ Injector)和时间积分法测量,辉光(Glow):,化学发光的分类,免疫测定 是利用抗原抗体反应来测定标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化学发光分析
链接地址:https://www.31ppt.com/p-6445285.html