平的微积分第二章课件23隐函数与参数的导数.ppt
《平的微积分第二章课件23隐函数与参数的导数.ppt》由会员分享,可在线阅读,更多相关《平的微积分第二章课件23隐函数与参数的导数.ppt(34页珍藏版)》请在三一办公上搜索。
1、第三节 隐函数的导数和由参数方程确定的函数的导数,一、隐函数的导数二、由参数方程确定的函数的导数三、相关变化率,一、隐函数的导数,定义:,隐函数的显化,问题:隐函数不易显化或不能显化如何求导?,隐函数求导法则:,用复合函数求导法则直接对方程两边求导.,例1,解,解得,(注意y是x的函数),例2,解,所求切线方程为,显然通过原点.,例3,解,二、对数求导法,观察函数,方法:,先在方程两边取对数,然后利用隐函数的求导方法求出导数.,-对数求导法,适用范围:,2)有些显函数用对数求导法求导很方便.,例如,两边取对数,两边对 x 求导,例1,解,等式两边取对数得,一般地对幂指函数也可用对数求导法,例2
2、,解,等式两边取对数得,三、由参数方程所确定的函数的导数,例如,消去参数,问题:消参困难或无法消参如何求导?,由复合函数及反函数的求导法则得,例1,解,例2,解,所求切线方程为,例3,解,四、相关变化率,相关变化率问题:,已知其中一个变化率时如何求出另一个变化率?,为两可导函数,之间有联系,之间也有联系,称为相关变化率,相关变化率问题解法:,找出相关变量的关系式,对 t 求导,得相关变化率之间的关系式,求出未知的相关变化率,解,仰角增加率,解:设时刻 t 容器内水面高度为 x,水的,两边对 t 求导,而,故,体积为 V,则,解,水面上升之速率,思考与练习,1.求螺线,在对应于,的点处的切线方程
3、.,解:化为参数方程,当,时对应点,斜率,切线方程为,点击图中任意处动画播放暂停,2.设,求,提示:分别用对数微分法求,答案:,3.设,由方程,确定,解:,方程两边对 x 求导,得,再求导,得,当,时,故由 得,再代入 得,求,求其反函数的导数.,解:,方法1,方法2,等式两边同时对 求导,备用题,1.设,求,解:方程组两边同时对 t 求导,得,2.设,五、小结,隐函数求导法则:直接对方程两边求导;,对数求导法:对方程两边取对数,按隐函数的求导法则求导;,参数方程求导:实质上是利用复合函数求导法则;,相关变化率:通过函数关系确定两个相互依赖的变化率;解法:通过建立两者之间的关系,用链式求导法求解.,练 习 题,练习题答案,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 第二 课件 23 函数 参数 导数
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6437542.html