面试无机化学研究前沿.ppt
《面试无机化学研究前沿.ppt》由会员分享,可在线阅读,更多相关《面试无机化学研究前沿.ppt(64页珍藏版)》请在三一办公上搜索。
1、7.2 无机高分子化合物,7.1 无机碳化学,第7章 无机化学研究前沿,7.3 纳米材料,碳纳米管,7.1.2 碳单质及其衍生物,7.1 无机碳化学,概述,有人预言,21世纪是“超碳时代”。理由是:金刚石的人工合成、碳纤维的开发应用、石墨层间化合物的研究、富勒烯(碳笼原子簇)及线型碳的发现及研究都取得了令人瞩目的进展。这些以单质碳为基础的无机碳化学给人们展现了无限的想象空间。IBM日前表示将开发在碳纳米管上融合一片集成电路的器件。该技术有望加快下一代芯片产品的面世。美国贝尔实验室的研究小组使用富勒烯在较高温度下(117K)制造出了电阻为零的有机超导体。,7.1.1 概述,在学术界,一般认为金刚
2、石、石墨、碳笼原子簇、线型碳是碳的几种同素异形体。,7.1.2 碳单质及其衍生物,石墨,混合键型或过渡型晶体,碳原子间以sp2杂化成键;无定形碳和碳黑都是微晶石墨。,金刚石,原子晶体,碳原子间以sp3杂化成键;,富勒烯(碳笼原子簇),分子晶体,碳原子间以s0.305p0.695杂化轨道成键(3条键);碳原子上还有1条键(s0.085p0.915);,线型碳,分子晶体,碳原子间以sp杂化成键。其化学稳定性为:线型碳石墨金刚石富勒烯。,1.金刚石,金刚石主要用于精密机械制造、电子工业、光学工业、半导体工业及化学工业。天然金刚石稀少,只限于用作装饰品,因此人工合成金刚石正在成为碳素材料中的重要研究开
3、发领域。金刚石的合成 金刚石合成已有四十多年的历史。已报道的合成方法大致可分为两类:石墨转化法和气相合成法石墨转化法,常温常压下石墨转化为金刚石是非自发的,但在高温高压(由疏松到致密)下可能实现这种转化,其温度和压力条件因催化剂的种类不同而不同。,石墨转化法可分为静态超高压高温法和动态法两种。静态超高压高温法 用高压设备压缩传压介质产生310GPa的超高压,并利用电流通过发热体,将合成腔加热到l0002000高温。其优点是能较长时间保持稳定的高温高压条件,易于控制。该法可得到磨料级金刚石,但设备技术要求高。为了获得粒度较大的优质金刚石单晶,普遍采用过渡金属(Ni,Fe,Co等)及其合金作触媒,
4、保持约5GPa的压力、1500K的温度到一定的时间,使石墨转化金刚石。要获得优质粗粒的金刚石单晶,一般用石墨片与触媒片交替组装的方式。,动态法 利用动态波促使石墨直接转变成金刚石。动态冲击波可由爆炸、强放电和高速碰撞等瞬时产生,在被冲击介质中可同时产生高温高压,使石墨转化为金刚石。该法作用时间短(仅几微秒),压力及温度不能分别加以控制,但装置相对简单,单次装料多,因而产量高。产品为微粉金刚石,可通过烧结成大颗粒多晶体,但质量较差。石墨转化法所得的金刚石往往是细粒乃至粉末,使用时往往需烧结。此外,产品中还含有未反应的石墨、催化剂等杂质,因此还需提纯。这种产品主要用于精密机械制造领域。,气相合成法
5、(CVD法),气相法是用含碳气态物质作碳源,产物往往是附在基体上的金刚石薄膜。研究表明,含碳气态物质在一定高温分解出的甲基自由基,甲基自由基相当于金刚石的活性种子。因为金刚石中的碳处于sp3杂化状态,甲基中的碳也处于sp3杂化状态,甲基自由基分解后便以金刚石的形式析出。气相法成功地制成了膜状金刚石,使金刚石的应用范围大大扩展,因为高温高压合成的金刚石及天然金刚石的应用只是利用其高硬度特性,其他优异的特性均因形态的限制而未能得到很好的开发和利用。膜状金刚石必然会进入半导体工业、电子工业及光学等领域。,日前,国际化学界权威学术刊物美国化学会志(J.Am.Chem.Soc.)刊发了中国科技大学陈乾旺
6、教授领导的研究组的论文“低温还原二氧化碳(CO2)合成金刚石”。他们自己研制高压反应釜进行实验,用安全无毒的二氧化碳作原料,使用金属钠作为还原剂,在440和800个大气压的条件下,经过12小时的化学反应,终于成功地将CO2还原成了金刚石。目前,已能生长出1.2毫米的金刚石,有望达到宝石级,产物外观无色、透明,可与天然金刚石媲美 此法CO2转化金刚石的产率达8.9%,工艺重复性好,结果日前已申请国际专利。,2.石墨及其石墨层间化合物,石墨 石墨具有层状晶体的结构。在晶体中,C原子采用sp2杂化轨道成键,彼此间以键连接在一起,同时在同一层上还有一个大 键。同一层的碳CC键长143 pm,层与层之间
7、的距离为335 pm。,石墨层间化合物 石墨的碳原子层间有较大的空隙,容易插入电离能小的碱金属和电子亲和能大的卤素、卤化物及酸等,从而形成石墨层间化合物(GIC)。石墨层间化合物的类型 石墨层间化合物按基质嵌入物间的化学键分类,可分为离子型和共价型两大类。在离子型化合物中,碱金属之类的插入物形成向石墨提供电子的层间化合物,称为施主型;插入物为卤素、卤化物时,形成从石墨得到电子的层间化合物,称为受主型化合物。,由高温直接氟化反应得到的氟化石墨及由HClO4等强氧化剂在100 以下的低温合成的氧化石墨(含O及OH),基质嵌入物间具有共价键,称共价型层间化合物。石墨层间化合物的合成 合成方法主要有直
8、接合成法和电化学法。直接合成法是使石墨与反应物直接接触反应。电化学法是将石墨作为阳极,反应物的电解质溶液作电解液进行电解而制备石墨层间化合物的方法。,应用,石墨层间化合物的结构 离子型石墨层间化合物中碳原子基本保持石墨的平面层状结构,插入层的层间距增大,未插入层的层间距无变化。石墨层间化合物按插入层的分布分为不同的阶数:一阶化合物每隔1个碳原子层插入1层反应物,如C8K;二阶为每隔2层插入1层反应物,如C24K;三阶为每隔3层插入1层反应物,如C36K 依此类推。据报道已有阶数为15的层间化合物。,在共价型石墨层间化合物中,嵌入物与基质碳原子间的化学键是共价键。一般而言,石墨的层平面要变形。例
9、如氟化石墨,其碳原子层是折皱的,折皱面内各碳原子以sp3杂化轨道与其他3个碳原子及1个氟原子结合,CC键长与一般CC单键相等,层间距为730pm,比未插入层增大一倍多。,石墨层间化合物的功能与应用 石墨层间化合物的性质因嵌入物不同、阶数不同而不同,其功能及应用是多方面的,主要可用于:轻型高导电材料、电极材料、新型催化剂、固体润滑剂、贮氢及同位素分离材料、防水防油剂等。电极材料 石墨间隙化合物的电阻比石墨本身还低,在垂直方向降低了约10倍,沿石墨层水平方向降低了近100倍。而且间隙化合物具有与真正的金属一样的电阻,即电阻率随温度升高而升高。石墨层间化合物适宜作电极。以氟化石墨为正极,锂为负极的一
10、次电池已工业化。,轻型高导电材料 石墨层间化合物的电导率比石墨更高,有的超过了铜(电导率为5.3107 Sm-l),且这些物质的密度比一般金属低,故作为轻型导电材料受到青睬。固体润滑剂 用氟化石墨作固体润滑剂,具有在高温、真空或氧化还原气氛中保持好的润滑性能的优点(而一般的石墨存在润滑性能下降的缺陷)。这是由于氟化石墨的层面由CF键构成,其表面能极小,容易滑动之故。,贮氢及同位素分离材料 钾、铷、铯等碱金属的石墨层间化合物在一定温度下能化学或物理吸附氢。如C8K吸附氢生成C8KHx(0 x2),且离解温度及离解能低,吸附与解吸完全可逆,达平衡的时间短,因而可作贮氢材料。更有趣的是这种吸附对氢、
11、氖、氖有选择性,因而可用于氢同位素分离。新型催化剂 如C8K作乙烯、苯乙烯等聚合反应的催化剂 石墨钾FeCl3三元层间化合物作H2和N2为原料合成氨的催化剂,350 下1h转化率可达90%。,防水防油剂 如氟化石墨的表面自由能和聚四氟乙烯相近或略低,显示了极强的疏水性。因此,可利用此疏水性预防因水而引起的润滑和污染附着。在镀镍时,如使Ni和氟化石墨共析,可得防水性极强的金属表面。石墨复合磁粉 将铁盐插入石墨层间可制得石墨复合磁粉,其磁性能优于Fe2O3磁粉,用作磁记录介质,可增大对带基附着力、减小对磁头的磨损、提高其防潮性能及温度稳定性。,3.碳纤维,碳纤维是由有机纤维经炭化及石墨化处理而得到
12、的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。,碳纤维的制备 目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、炭化及石墨化等4个过程。其间伴随的化学变化,包括脱氢、环化、氧化及脱氧等。,碳纤维的性质及其应用 碳纤维具有模量高、强度大、密度小、耐高温、抗疲劳、抗腐蚀、自润滑等优异性能。从航天、航空、航海等高技术产业到汽车、建筑、轻工等民用工业的各个领域正逐渐得到越来越广泛的应用。主要用于导电、隔热、过滤等方面。碳纤维增强复合材料作结构材料,可作飞机的尾翼或副翼,通信卫星的天线系统和导波管、航天飞机的货舱门、燃料箱、助推火箭的外
13、壳。在建筑方面,可作碳纤维增强水泥地板,并有取代钢筋的可能性。,作为非结构材料,碳纤维复合材料可作密封材料、耐磨材料、隔热材料、电极材料。在原子能工程上用碳纤维石墨复合材料作铀棒的幕墙材料,不仅可以防止铀棒的辐射变形,使其对中子的吸收截面变小,反射中子能力增强,而且在光氧条件下能耐3000 以上的高温。将碳纤维进行活化处理,得到活性碳纤维,是已知的比表面积最大的物质之一(2500 m2g-1),被称为第3代活性炭,作为新型吸附剂具有重要的应用前景。在医学上,碳纤维增强型塑料是一种理想的人工心肺管道材料,也可作人工关节、假肢、假牙等。,4.富勒烯,1985年,英国Sussex大学的H.W.Kro
14、to等人用激光作石墨的气化试验发现了C60,这是一种由60个碳原子组成的稳定原子簇。此后又发现了C50、C70、C240乃至C540等,它们都具有空心的球形结构,属于笼形碳原子簇分子。由于C60的结构类似建筑师Buckminster Fuller设计的圆顶建筑,因而称为富勒烯(Fullerend),也有布基球、足球烯、球碳、笼碳等名称。C60是20世纪的重大科学发现之一。Kroto等人因此而荣获1996年诺贝尔化学奖。,富勒烯的结构特点 以C60为代表的富勒烯均是空心球形构型,碳原子分别以五元环和六元环而构成球状。如C60就是由12个正五边形和20个正六边形组成的三十二面体,像一个足球。每个五
15、边形均被5个六边形包围,而每个六边形则邻接着3个五边形和3个六边形。富勒烯族分子中的碳原子数是28、32、50、60、70 240、540等偶数系列的“幻数”。,C60分子中碳原子彼此以键键合,其杂化轨道类型介于sp2与sp3之间,平均键角为116。碳原子上剩余的轨道相互形成大键。相邻两六元环的CC键长为138.8 pm,五元环与六元环共用的CC键长为143.2 pm。C70为椭球形,C240及C540与C60的差别更大一些,但都是笼形空心结构。C60的晶体属分子晶体,晶体结构因晶体获得的方式不同而异,但均系最紧密堆积所成。用超真空升华法制得的C60单晶为面心立方结构。,C60的合成 1985
16、年以激光气化石墨法只能制取几毫克的C60,不足以开展大量的研究。直到1990年,C60的合成才取得突破。目前C60的合成法主要可分为以下两种:石墨气化法 电弧放电法气化石墨,每小时可气化10g,产物是一种黑色粉末,是C60和C70的混合物。用升华法、色谱法等可得到纯的C60和C70。纯碳燃烧法 在573673 K真空中加热特制的炭黑,收集蒸气凝结成的固体,制得C60和C70。,富勒烯的应用前景 从化学和材料科学的角度来看,富勒烯具有重要的学术意义和应用前景,其中最早令人关注的是金属掺杂富勒烯的超导性。由于室温下富勒烯是分子晶体,C60的能带结构表明是半导体,能隙为1.5eV。但经过适当的金属掺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 面试 无机化学 研究 前沿
链接地址:https://www.31ppt.com/p-6436071.html