燃烧理论第四讲火焰传播理论.ppt
《燃烧理论第四讲火焰传播理论.ppt》由会员分享,可在线阅读,更多相关《燃烧理论第四讲火焰传播理论.ppt(37页珍藏版)》请在三一办公上搜索。
1、第四章,火焰传播理论,一、层流火焰传播机理,在工程应用中,可燃混合物着火的方法是先引入外部热源,使局部先行着火,然后点燃部分向未燃部分输送热量及生成活性中心,使其相继着火燃烧。在可燃混合物中放入点火源点火时,产生局部燃烧反应而形成点源火焰。由于反应释放的热量和生成的自由基等活性中心向四周扩散传输,使紧挨着的一层未燃气体着火、燃烧,形成一层新的火焰。反应依次往外扩张,形成瞬时的球形火焰面。此火焰面的移动速度称为层流火焰传播速度Sn(或称层流火焰传播速度Sl,或正常火焰传播速度),简称火焰传播速度。未燃气体与已燃气体之间的分界面即为火焰锋面,或称火焰面。,静止均匀混合气体中的火焰传播,流管中的火焰
2、锋面,取一根水平管子,一端封住,另一端敞开,管内充满可燃混合气。点火后,火焰面以一定的速度向未燃方面移动,由于管壁的摩擦和向外的热量损失、气体的粘性、热气体产生的浮力,使其成为倾斜的弯曲焰面。如果管子相当长,那么火焰锋面在移动了大约510倍管径的距离之后,便明显开始加速,最后形成速度很高的(达每秒几千米)高速波,这就是爆振波。如果将可燃混合物置于一个封闭的容器内,氧化反应释放出的热量会导致容器内压力上升,反应速率越大,则压力上升越快,压力上升又会进一步加快反应速率,导致压力不断升高,如果容器不能承受其压力就会爆裂开来,这种伴随着压力不断上升的燃烧现象称之为爆炸。正常燃烧属于稳定态燃烧,可视为等
3、压过程;而爆振和爆炸属不稳定态燃烧,是靠气体的膨胀来局部压缩未燃气体而形成的冲击波。在民用燃具和燃气工业炉中,燃气的燃烧均属于正常燃烧。,若可燃混合气在一管内流动,其速度是均匀分布的,形成一平整的火焰锋面。如Sn=u,则气流速度与火焰传播速度相平衡,火焰面便驻定不动。这是流动可燃混合气稳定燃烧的必要条件。层流火焰传播理论 第一是热理论,它认为控制火焰传播的主要是从反应区向未燃气体的热传导。第二是扩散理论,认为来自反应区的链载体的逆向扩散是控制层流火焰传播的主要因素。第三是综合理论,即认为热传导和活性中心的扩散对火焰的传播可能同等重要。大多数火焰中,由于存在温度梯度和浓度梯度,因此传热和传质现象
4、交错地存在着,很难分清主次。下面介绍由泽尔多维奇等人提出的热理论。,火焰层结构及温度、浓度分布,在火焰锋面上取一单位微元,对于一维带化学反应的稳定层流流动,其基本方程为:连续方程动量方程 p常数能量方程(微元体本身热焓的变化等于传导的热量加上化学反应生成的热量)对于绝热条件,火焰的边界条件为,为求定Sn(u0),提出了一种分区近似解法,把火焰分成预热区和反应区。在预热区中忽略化学反应的影响,在反应区中略去能量方程中温度的一阶导数项。预热区中的能量方程为其边界条件是假定Ti是预热区和反应区交界处(温度曲线曲率变化点)的温度,从T0到Ti进行积分,(下标“I”表示预热区),反应区的能量方程为 其边
5、界条件是 乘式 后积分(下标“”表示反应区),Ti为未知,进一步变换可得,表示在TmT0之间反应速率的平均值,层流火焰传播速度可看作是可燃混合物的主要特性,从中可以得出如下定性结论:层流火焰传播速度与平均热导率的平方根成正比,与热容的平方根成反比,因此层流火焰传播速度与气体混合物的物理常数有关。层流火焰传播速度随着差值(Ti-T0)的减小而增加,若将气体预热到Ti,则层流火焰传播速度就会趋向于无穷大。可燃混合物的热效应及化学反应速率显著地影响着层流火焰传播速度。可燃混合物的过剩空气系数亦将影响其层流火焰传播速度,当1或1时都会降低层流火焰传播速度。,二、湍流火焰传播,在湍流流动时,火焰面变得混
6、乱和曲折,形成火焰的湍流传播。在研究湍流火焰传播时,把焰面视为一束燃气与已燃气之间的宏观整体分界面,也称为火焰锋面。湍流火焰传播速度也是对这个几何面来定义的,用St表示。在湍流火焰中有许多大小不同的微团作不规则运动。如果微团的平均尺寸小于层流火焰锋面的厚度,称为小尺度湍流火焰;反之,则称为大尺度湍流火焰。当微团的脉动速度大于层流火焰传播速度(uSl)时,为大尺度强紊动火焰,反之为大尺度弱紊动火焰。关于大尺度强紊动的火焰传播机理,不同学者有不同的解释,因而形成了湍流火焰的表面理论和容积理论。,湍流火焰的传播速度比层流时要大得多,其理由为(1)湍流脉动使火焰变形,从而使火焰表面积增加,但是曲面上的
7、传播速度仍保持为层流火焰速度。(2)湍流脉动增加了热量和活化中心的传递速度,反应速率加快,从而增大了垂直火焰表面的实际燃烧速度。(3)湍流脉动加快了已燃气和未燃气的混合,缩短混合时间,提高燃烧速度。,湍流火焰模型(a)小尺度湍流;(b)、(c)大尺度湍流;(d)容积湍流燃烧 1燃烧产物;2新鲜混气;3部分燃尽气体,三、层流火焰传播速度的测定,层流火焰传播速度不能用精确的理论公式来计算。通常是依靠实验方法测得单一燃气或混合燃气在一定条件下的Sn值,有时也可依照经验公式和实验数据计算混合气的火焰传播速度。尚缺少完全符合Sn定义的测定方法。精确测量Sn的困难在于几乎不可能得到严格的平面状火焰面。测定
8、Sn的实验方法,一般可归纳为静力法和动力法两类。(一)、静力法测定Sn1、管子法静力法中最直观的方法是常用的管子法,测定时,用电影摄影机摄下火焰面移动的照片,已知胶片走动的速度和影与实物的转换的比例,就可算出可见火焰传播速度Sv。在这种情况下,底片上留下的是倾斜的迹印,根据倾斜角可以确定任何瞬间的火焰传播速度。,用静力法(管子法)测定Sn的仪器 1玻璃管;2阀门;3火花点火器;4装有惰性气体的容器,由于燃烧时气流的紊动,焰面通常不是一个垂直于管子轴线的平面,而是一个曲面。设F为火焰表面积,f为管子截面积,可得 Svf=SnFSvSn。管径越大,紊动越强烈,焰面弯曲度越大,Sv与Sn的差值也越大
9、。,管径越大,管壁散热对火焰传播速度的影响越小,如焰面不发生皱曲,则随着管径的增大火焰传播速度上升,并趋向于极限值Sn。但实际上管径增大时焰面要发生皱曲。管径越大,焰面皱曲越烈,因而Sv值随管径的增加而不断上升。当管径小到某一极限值时,向管壁的散热大到火焰无法传播的程度,这时的管径称为临界直径dc。临界直径在工程上是有意义的,可利用孔径小于临界直径值的金属网制止火焰通过。,图2-22 火焰传播速度与管径的关系,管子法测得的可见火焰传播速度与燃气空气混合物成分的关系(d=25.4mm)l氢;2水煤气;3一氧化碳;4乙烯;5炼焦煤气;6乙烷;7甲烷;8高压富氧化煤气,2、皂泡法将已知成分的可燃均匀
10、混合气注入皂泡中,再在中心用电点火化点燃中心部分的混合气,形成的火焰面能自由传播(气体可自由膨胀),在不同时间间隔出现半径不同的球状焰面。用光学方法测量皂泡起始半径和膨胀后的半径,以及相应焰面之间的时间间隔。即可计算得火焰传播速度。这种方法的主要缺点是肥皂液蒸发对混合气湿度的影响。某些碳氢燃料对皂泡膜的渗透性、皂泡球状焰面的曲率变化以及湍流脉动等因素,都会给测定结果带来误差。另一种类似的方法是球形炸弹法。球弹中可燃混合气点燃后火焰扩散时其内部压力逐步升高。根据记录的压力变化和球状焰面的尺寸,可算得火焰传播速度。,(二)、动力法测定Sn1、本生火焰法图本生火焰由内锥和外锥两层焰面组成,内锥面由燃
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 燃烧 理论 第四 火焰 传播

链接地址:https://www.31ppt.com/p-6426427.html