煤层气的成因.ppt
《煤层气的成因.ppt》由会员分享,可在线阅读,更多相关《煤层气的成因.ppt(56页珍藏版)》请在三一办公上搜索。
1、第一章 煤层气的成因,第一节 煤成烃机理,一、煤成烃的物质基础,二、煤的化学结构与双组分模式,煤是由带有官能团(如-OH,=C=O,-COOH,-OCH3)和侧链(胺、大分子烃)的缩合芳香核为骨架的结构单元以网状桥键相连而组成的三维空间结构的大分子化合物,其结构参数包括:缩合芳香环数、芳香度、官能团分布、碳氢和杂原子分布及桥键等。,1、煤的化学结构,煤衍生物的结构模型示意图,不同类型煤的基础结构单元示意图,目前取得主要进展如下:热解试验GC/MS表明,中煤级阶段镜质组大分子结构的变化主要从烷基酚结构(亚烟煤)向烷基苯和萘结构转化;Van Krevelen认为,在烟煤阶段每个结构单元平均芳香环数
2、为45,而最近研究表明为11.5个,且在烟煤阶段,芳香环数增加很慢,直至半无烟煤无烟煤阶段,才突然迅速增加;在烟煤阶段,煤化学结构中范德华力和氢键比共价键更重要。,煤是具有分子筛结构的微孔状固体,其内部微孔隙中充满了煤化作用过程中形成的气、液态流动相。,2、煤组成的双组分模式,组分描述:煤主要由有机组分构成的沉积岩;B主要为粘土矿物、石英、方解石、黄铁矿及其它物质,包括粘土矿物的结合水(-OH)及层间水;A-1由桥键相连的单个或多个带有含H或O官能团的芳香环结构;A-2-a中到高分子的油和沥青,包括芳香的、脂肪的和杂原子;A-2-b主要为CH4、CO2、H2O及N2、C2H6等小分子,其富集程
3、度取决于煤级、环境条件和煤化作用历史。,煤分子两相模型,三、煤化作用的化学过程,煤化作用过程可用下式表示:,描述煤结构中小分子部分的演化、圈闭及后来的破坏过程,富C基质部分的结构变化过程:,A表示富C的芳香结构基质部分,B表示富H或O的小分子部分。解聚作用是指大分子基质裂解为两个小分子,包括小分子官能团的脱除及桥键断裂;裂解指“圈闭”的小分子被裂解成更小的分子;而聚合作用则是指有机分子通过共价键结合为大分子的反应。,Evolution of Methane,Heat and pressure work together to increase coal rankMethane and wate
4、r are released in the processBoth methane and water can be trapped for future recovery using CBM/CMM,Source:ALL Consulting,第二节 煤层气的成因,煤层气成因可分为两大类:有机成因和无机成因,一、生物成因气,1、原生生物成因气,生物成因煤层气是指在微生物作用下,有机质(泥炭、煤等)部分转化为煤层气的过程。,按形成阶段可划分为原始生物成因气和次生生物成因气,1)形成阶段:早期生物成因气形成于泥炭褐煤阶段(RO0.5%),即泥炭化作用和 成岩作用阶段。,2)依其所利用的C源,生物
5、气的形成途径可分为两种:CO2还原生成CH4;醋酸、甲醇和甲胺等发酵转化成CH4。,3)形成过程:生物气的形成过程包括一系列复杂的生物化学作用,这个过程的实质是通过微生物的作用,使复杂的不溶有机质在酶的作用下发酵变为可溶有机质,可溶有机质在产酸菌和产氢菌的作用下,变为挥发性有机酸、2和CO2;2和CO2在甲烷菌作用下最后生成CH4。,氧性细菌通过纤维素酶和催化作用可把纤维素水解为单糖类,当转变为还原环境时,单糖在还原菌参与下发酵可生成脂肪酸(丁酸和乙酸),甲烷菌通过辅酶M(HSCH2CH2SO3,简写为HS-)活化CO2和H2(CO2亦可来自脱羟作用),并使之形成甲基,最后还原为CH4。,OH
6、,4)生物气的形成应满足两个条件:要有丰富的有机质提供产气的物质基础;具备有利于甲烷菌繁殖的环境条件。研究表明:在厌氧环境、低SO42-、低温(通常在50以下)、高pH值、适宜的孔隙空间和快速沉积等条件下,生物气会大量形成。,在厌氧环境中CO2、乙酸主要来自于富氧的碳水化合物,少部分来自于蛋白质,在高等植物中主要是纤维素、半纤维素、糖类、淀粉和果胶等有机化合物。,2.次生生物成因气,1)阶段:煤层后期抬升阶段,原生与次生生物成因气的阶段划分取决于有没有抬升。在煤层形成并被埋藏后,如果没有进入成熟阶段(RO0.5%),同时又没有发生抬升,次生形成的生物气为原生生物成因气;如果发生抬升,不管煤阶如
7、何,再生成的生物气即为次生生物成因气。,2)形成条件:a、通过补给区由大气降水由煤层气露头带入煤 层的微生物 b、c、有机质的供给。低分子有机质的来源是煤,大分子的煤要通过腐生菌作用才能降解为可供甲烷菌作用的低分子有机质。,二、热成因气,1.原生热成因气,煤在温度、压力作用下发生一系列物理、化学变化的同时,也生成大量的气态和液态物质。由于煤隶属III型干酪根,属于倾气性有机质,演化过程中形成的烃类以甲烷为主。,指由煤生成并就地储存的热成因气,保持了煤层气原始的组分和同位素组成。,从烃源岩的角度,可将煤级演化阶段分为未成熟阶段(泥炭褐煤RO2.0%),以热裂解气形成为主,热裂解,(1)热降解气(
8、0.5%RO2.0%),这一阶段发生的化学反应,主要是官能团和侧链的裂解及其产生的大分子烃类(油、湿气)的裂解与聚合,据反应进行程度可分早、中、晚三期。早期(0.6%RO0.8%):以含氧官能团的断裂为主,产生CO2,芳烃结构上烷烃支链部分断裂形成少量CH4和C2H6以上的重烃。H/C变化不大,O/C由1.23急降至0.12。中期(0.8%RO1.3%):有机质的演化主要通过树脂、孢子、角质等稳定组分的降解初期所形成沥青的转化,以及芳核结构上烷烃支链的断裂,形成富含重烃的气体,该阶段相当于生油岩高峰生油期。该阶段H/C从1.76降至0.89,O/C从0.12降至0.05,CH4生成量高于CO2
9、,其中 RO=0.81.0%为热成因CH4大量形成的阶段。晚期(1.3%RO2.0%):芳核支链的进一步断裂形成含CH4较多的气体。H/C由0.79降至0.48,O/C由0.05到0.04保持平稳。,(2)热裂解气(RO2.0%),由于有机质芳香结构上的大部分烷烃支链在成熟阶段已消耗,沥青质、液态残余烃等较大分子烃类裂解、化学反应由以降解为主转为裂解和芳香核之间的缩合为主,并由此产生大量CH4气体。在此阶段,有机质芳香度从0.85增至0.97,C原子几乎全部集中在芳香结构上。,2.次生热成因气,是指热成因气形成后经过运移,再在异地聚集下来,运移造成了煤层气气体组分和同位素的分馏,San Jua
10、n盆地Fruitland 煤层气的二氧化碳含量,沁水盆地东南部15#煤层CO2含量等值线与CH4碳同位素值等值线图,三、混合成因气,混合气存在两种形式:(1)原地混合,即原地形成的热成因气和原地形成的次生生物气相混合,不发生运移,一般出现在浅部。(2)异地混合气,热成因气和次生生物气发生了运移,在地下水滞留区聚集、混合,如圣胡安盆地北部和沁水盆地东南部。,四、无机成因气,地球原始大气中含有的大量甲烷,是无机成因烃类的主要来源。当地球开始凝聚时,原始大气中的甲烷作为“化石”被“吸收”保留在上地幔和地壳深部,在通过断裂、火山活动或地壳运动等地球脱气作用释放出来。另一种无机成因气与二氧化碳的形成有关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 煤层气 成因
链接地址:https://www.31ppt.com/p-6426130.html