海信整机电路分析.ppt
《海信整机电路分析.ppt》由会员分享,可在线阅读,更多相关《海信整机电路分析.ppt(115页珍藏版)》请在三一办公上搜索。
1、整机电路分析,1.1 整机概述,1.2 开关电源电路分析,1.3 室内机电路分析,1.4室外机电路分析,1.1整机概述,室内机电路图,电源,室内风机控制,通讯电路,温度传感器,风门电机,复位与晶振,室外电路,开关电源,电流检测电路,温度传感器,电压检测电路,通讯电路,室外风机控制电路,IPM基板电路原理图,信号通过光耦驱动IPM,+15V供电,280V电压,压机供电端,功率模块实物,2.2开关电源电路分析,开关电源实例,TOP集成电路,高频变压器,反馈电路,电路实物图,滤波元件,元件实物,滤波器,EMI滤波器的电路及其元件配置,为了减小体积和降低成本,开关电源一般采用简易式单级EMI滤波器,典
2、型电路如图3.1(a)(d)所示。(a)和(b)图,中的电容器C能滤除串模干扰,区别公是(a)图将C接在输入端,(b)图则接到输出端。(c)和(d)图所示电路较复杂,抑制电磁干扰的效果更佳。,(c)图中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻。可将C3上积累的电荷放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电保证使用的安全性。(d)图则是把共模干扰滤波电容C3和C4接在输出端。,EMI滤波器能有效抑制开关电源的电磁干扰。下图中曲线a为不加EMI滤波器时开关电源上干扰波形。曲线b是插入(c)所示EMI滤波器后的波形,电磁干扰大约被衰减40d
3、B。曲线C为加上如图(d)所示EMI滤波器后的波形,能将电磁干扰衰减约50dB70dB.,EMI电路效果图,不加EMI,EMI滤波的元件的安装位置和选用,EMI滤波器的安装 位置也很重要。如下图给出了两种布局方式。(a)图为正确的布局,EMI滤波器尽量远离输出级;(b)图为错误布局,因为EMI滤波靠近输出级,所以滤波元件上的干扰会串入输出电路,扼流圈,扼流圈分共模、串模两种。通常采用共模扼流圈,由下图可见,共模扼流圈实际由共模电感、串模泄漏电感这两部分构成,因此它对串模干扰也有一定的抑制作用。其优点是能同时起到共模扼流圈、串模扼流圈两种作用,而成本并未增加。共模扼流圈的线径要能承受可能发生的浪
4、涌电流。,抑制瞬态干扰,瞬态干扰是指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时极短,但电压幅度高、瞬间能量大。瞬态干扰会造成开关电源输出电压的波动。当瞬态电压叠加在UI上,使UIU(BR)DS时,还会损坏TOP switch芯片,必须采取措施来抑制瞬态干扰。通常并联一只压敏电阻器,对浪涌电压进行钳位。,浪涌电压和振铃电压波形,压敏电阻,压敏电阻是一种对外加电压的变化产生敏感的特种电阻。其阻值的变化与外加电压的变化成反比关系,即当外加电压增高时,其电阻值反而减小。目前常用的为氧化锌压敏电阻。压敏电阻的电流-电压特性:压敏电阻的I-V特性图,可以看出当压敏电阻两端出
5、现的浪涌电压增至压敏电压时,电阻突然减小,电流会产生一个较大的冲击,等浪涌电压过后,又回到高阻状态,等待下次的被冲击。从而起到保护有关电路的作用。,压敏电阻的选择原则,标称电压的选择:考虑到电源电压的上升波动、压敏电阻工作过程中反复被冲击会造成元件的老化等重要因素。在直流状态下,标称值应大于等于1.33倍工作电压;在交流工作状态下,标称值电压应大于等于1.86倍工作电压;若所保护电路过电压几率较高,工作动作频繁,其标称的选择应适当放宽,如直流1.6倍;交流2.2倍。通流量的选择:通流量指通流容量。通常压,敏电阻本身所能承受的极限能量一般要大于过电压能量的2倍,这样保证压敏电阻不会因为冲击而导致
6、压敏电压的下跌。故在压敏电压确定后,在电路安装间容许情况下,尽量选择通流量大的元件。压敏电阻通常采用直标法,直观,极易识别 MY23 型 型号 600V/5KA 通流容量 压敏电压标称值,电路实物图,压敏电阻,压敏电阻典型电路,压敏电阻,整流元件实物,整流电路分析,全波整流,电压波形,滤波电容的选择,钳位电路,钳位电路,钳位电路的作用,在TOP Switch关断时刻,由高频变压器漏感产生的尖峰电压,会叠加在直流高压U1和感应电压Uor上,可使功率开头管的漏极电压超过700V而损坏芯片。为此在初级绕组两端必须增加漏极钳位保护电路。由TVS和VD1组成的双向瞬态电压抑制器的V-I特性曲线如下图,特
7、性曲线,TOP Witch电源芯片,TOP简化图,电源集成块电路实物,公司应用电路,分立元件开关电源,开关电源电路原理分析,开关自激振荡电路:交流220V经整流硅桥整流、电解电容滤波输出的约300V的峰值电压(即电路板上的CN02和CN07接口)分两路送至开关振荡电路:一路经开关变压器的绕组加到开关管的集电极;另一路经稳压管ZD02稳压后给开关管基极提供微导通电压,于是开关管Q01导通,其集电极有电流流过,因此开关变压器T02初级绕组T02(5-7)产生上正下负的感应电压,该电压经开关变压器,耦合给次级T02(10-11)(即正反馈绕组),正反馈绕组把感应的电压反馈到开关管的基极,使开关管的集
8、电极电流增大。这样,由于正反馈电路的作用,很快进入饱和导通。开关管饱和导通时,集电极电流保持不变,初级绕组上的感应电压消失,正反馈停止,开关管退出饱和状态,并进入放大状态。此时,开关管集电极电流瞬间大大减小,因初级绕组的电流不能突变,故而产生很强的反向感应电压偶合给次级(即正反馈绕组),,正反馈绕组的反向感应电压经正反馈使开关管反偏截止。开关管截止后,开关变压器初级绕组无电流通过,感应电压消失,电源又通过稳压管给开关管基极提供导通电压,使开关管重新导通,并重复上述过程。这样,周而复始便形成了自激开关过程。开关变压器的次级便得到所需的高频脉冲电压,经脉冲整流、滤波、稳压后送给负载。,开关管导通时
9、,能量全部存储在开关变压器的初级,次级整流二极管D21、D20、D19、D18、D17未能导通,次级相当于开路;当开关管截止时,初级绕组反极性,次级绕组同样也反极性使次级的整流二极管正向偏置而导通,初级绕组向次级绕组释放能量。次级在开关管截止时获得能量,这样,电网的干扰就不能经开关变压器直接偶合给次级,具有较好的抗干扰能力。,此外,开关电源电路还有一些保护的电路:在开关变压器初级T02(5-7)绕组上并联R27、C09和二极管D13组成了缓冲电路。作用是使开关变压器初级绕组上之间的电压变化速率减缓。这样,一方面可以使开关管工作在较安全的工作区内,减小开关管的截止损耗;另一方面则可以使输出端的开
10、关尖峰电平大大降低。控制机理是:当开关管由饱和转向截止的过程中,由于初级绕组上的电压反向,使得二极管D13导通。,这时相当于在初级绕组之间并上一个电容,从而使开关管Q01(CE)极上的。电压上升速率变缓。当开关管再导通时,电容上的能量经电阻释放,以使开关管再截止时缓冲电路仍起作用并在Q01上的二极管D16是续流二极管,是为了让开关管Q01截止时,放掉Q01的C-E极的电荷,以提高开关管Q01的开关效率。,室内电路分析,上电复位电路,上电复位电路 在控制系统中的作用是启动单片机开始工作。但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响
11、。因此,在电源上电时延时输出给芯片一复位信号。上电复位电路另一个作用是,监视工作时电源电压是否正常。若电源有异常则会进行强制复位。,复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。等待接受输入信号(若如遥控器的信号等)。,上电复位电路原理图,上电复位电路原理分析,5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。电解电容C13是调节复位延时时间的。当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。以备下次复位启用。,MC34064内部结构框图,输入输出特性曲线
12、,振荡电路,振荡电路 在单片机系统中,为系统提供一个基准的时钟序列。振荡信号犹如人的心脏,使单片机程序能够运行以及指令能够执行。以保证系统正常准确地工作。,振荡电路原理图,振荡电路原理分析,振荡器的脚和3脚分别接入TMP87PH46N的19脚和20脚,2脚接地。在单片机TMP87PH46N内部集成了两个高频滤波电容,分别连接到XT01的1脚和3脚,并连接到地。以消除振荡信号的高频杂波,为单片机提供一个8MHz的稳定时钟频率。,过零检测电路,过零检测电路 在控制系统中为单片机提供一个输入检测和控制信号。他在电控系统中的作用有如下两个方面:一个是用于控制室内风机的风速;另一个方面是检测室内供电电压
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 海信 整机 电路 分析
链接地址:https://www.31ppt.com/p-6425159.html