浙大概率论与数理统计课件-数理统计.ppt
《浙大概率论与数理统计课件-数理统计.ppt》由会员分享,可在线阅读,更多相关《浙大概率论与数理统计课件-数理统计.ppt(75页珍藏版)》请在三一办公上搜索。
1、1,数 理 统 计,2,第五章 大数定律和中心极限定理,关键词:契比雪夫不等式大数定律中心极限定理,3,1 大数定律,背景 本章的大数定律,对第一章中提出的“频率稳定性”,给出理论上的论证为了证明大数定理,先介绍一个重要不等式,4,5,例1:在n重贝努里试验中,若已知每次试验事件A 出现的概率为0.75,试利用契比雪夫不等式估 计n,使A出现的频率在0.74至0.76之间的概率不 小于0.90。,6,随机变量序列依概率收敛的定义,7,8,大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意义,贝努里大数定律还提供了通过试验来确
2、定事件概率的方法,既然频率nA/n与概率p有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第7章将要介绍的参数估计法,参数估计的重要理论基础之一就是大数定理。,9,2 中心极限定理,背景:有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。,10,11,12,例2:设某种电器元件的寿命服从均值为100小时的指 数分布,现随
3、机取得16只,设它们的寿命是相互 独立的,求这16只元件的寿命的总和大于1920小 时的概率。,13,例3:某保险公司的老年人寿保险有1万人参加,每人每年交200元,若老人在该年内死亡,公司付给受益人1万元。设老年人死亡率为0.017,试求保险公司在一年内这项保险亏本的概率。,14,例4:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。,15,第六章 数理统计的基本概念,关键词:总 体 个 体 样 本 统 计 量,16,引言:数理统计学是一门关于数据收集、整理、分析 和推断的科学。在概率论中已经知道,由于大量的随
4、机试验中各种结果的出现必然呈现它的规律性,因而从理论上讲只要对随机现象进行足够多次观察,各种结果的规律性一定能清楚地呈现,但是实际上所允许的观察永远是有限的,甚至是少量的。例如:若规定灯泡寿命低于1000小时者为次品,如何确定次品率?由于灯泡寿命试验是破坏性试验,不可能把整批灯泡逐一检测,只能抽取一部分灯泡作为样本进行检验,以样本的信息来推断总体的信息,这是数理统计学研究的问题之一。,17,1 总体和样本,总体:研究对象的全体。如一批灯泡。个体:组成总体的每个元素。如某个灯泡。抽样:从总体X中抽取有限个个体对总体进行观察的取值过程。随机样本:随机抽取的n个个体的集合(X1,X2,Xn),n为样
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙大 概率论 数理统计 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6425127.html