十三、logistic回归模型.ppt
《十三、logistic回归模型.ppt》由会员分享,可在线阅读,更多相关《十三、logistic回归模型.ppt(56页珍藏版)》请在三一办公上搜索。
1、,二分类logistic回归模型,内容提要,非条件logistic回归模型简介简单分析实例哑变量设置自变量的筛选方法与逐步回归模型拟合效果与拟合优度检验模型的诊断与修正条件logistic回归,对分类变量的分析,当考察的影响因素较少,且也为分类变量时,常用列联表(Contingency Table)进行整理,并用2检验或分层2检验进行分析,但存在以下局限性:无法描述其作用大小和方向,更不能考察各因素间是否有交互作用;当控制的分层因素较多时,将导致检验结果不可靠;2检验无法对连续性自变量进行分析(致命缺陷)。,模型简介,logistic回归模型适合于应变量为二项分类的资料,在医学研究领域中的应用
2、广泛。如流行病病因学研究(包括队列研究、病例对照研究、横断面研究等)、临床疗效研究(如疗效与治疗方法、患病轻中重等因素关系)、卫生服务研究(如是否就诊与性别、年龄、文化程度的关系)等等。,模型简介,模型简介,logistic回归模型:,反应变量为二分类变量或某事件的发生率;自变量与logit(P)之间为线性关系;残差合计为0,且服从二项分布;各观测间相互独立。,模型简介适用条件,logistic回归模型应该使用最大似然法来解决方程的估计和检验问题,不应当使用以前的最小二乘法进行参数估计。,例1 某医师希望研究病人的年龄age、性别sex(0为女性、1为男性)、心电图检验是否异常ecg(ST段压
3、低、0为正常、1为轻度异常、2为重度异常)与冠心病ca是否有关,数据见logistic_binary.sav。,简单分析实例,简单分析实例,选入应变量,选入自变量,简单分析实例,简单分析实例,结果分析,此表为应变量取值水平编码,SPSS默认取值水平高的为阳性结果。,简单分析实例,结果分析,本表输出当前模型的-2log(似然值)和两个伪决定系数,但对于logistic回归而言,通常看见的伪决定系数不像线性回归模型中的决定系数那么大。,简单分析实例,结果分析,此表输出模型中的各自变量的偏回归系数及其标准误、Wald 2、自由度、P 值、OR值(即exp(B)。,哑变量设置,在回归模型中,回归系数b
4、表示其他自变量不变,x每改变一个单位时,所预测的y的平均变化量,当x为连续性变量时,这样解释没有问题,二分类变量由于只存在两个类别间的比较,也可以对系数得到很好的解释。但是当x为多分类变量时,仅拟合一个回归系数就不太合适了,此时需要使用哑变量(dummy variable)方式对模型进行定义。,例2 Hosmer 和Lemeshow于1989年研究了低出生体重婴儿的影响因素,结果变量为是否娩出低出生体重儿(变量名为LOW,1表示低出生体重儿,0表示非低出生体重儿),考虑的自变量有产妇妊娠前体重、产妇年龄、种族、是否吸烟、早产次数、是否患高血压等。(数据文件见:logistic_step.sav
5、。),哑变量设置,哑变量设置,哑变量设置,选入无序多分类变量,设置参照水平,哑变量设置,哑变量设置,结果分析,哑变量(种族)的设置情况,哑变量设置,白人低出生体重的风险较低,而黑人风险较高。,结果分析,参照水平最好要有实际意义,不推荐使用其他作为参照;参照水平组要有一定的频数作保证,应不少于30或50例;对有序自变量的分析:从专业出发确定;分别以哑变量和连续性变量的方式引入模型进行比较后确定。,哑变量设置,哑变量设置应该注意的问题,Forward:Conditional(最可靠)Forward:LR Forward:Wald(应当慎用)Backward:Conditional(最可靠)Back
6、ward:LR Backward:Wald(应当慎用),6 种筛选自变量的方法,逐步回归,例3 仍以例2的数据为例,演示如何在SPSS中实现逐步logistic回归分析。,逐步回归,选择其中一种逐步法,逐步回归,逐步回归,给出了模型拟合过程中每一步的-2log(L)及两个伪决定系数。,结果分析,逐步回归,结果分析,逐步回归,结果分析,输出了尚不在模型中的自变量是否能被引入的Score检验结果,这里只给出第一步的结果。,对数似然值与伪决定系数模型预测正确率ROC曲线,模型拟合效果检验,拟合效果判断指标:,对数似然值与伪决定系数:-2 倍对数似然值表示模型的拟合效果,其值越小,越接近于0,说明模型
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 十三 logistic 回归 模型
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6408968.html