函数的最大(小)值与导数(IV).ppt
《函数的最大(小)值与导数(IV).ppt》由会员分享,可在线阅读,更多相关《函数的最大(小)值与导数(IV).ppt(26页珍藏版)》请在三一办公上搜索。
1、函数的最大(小)值与导数,f(x)0,f(x)0,复习:一、函数单调性与导数关系,如果在某个区间内恒有,则 为常数.,设函数y=f(x)在 某个区间 内可导,,f(x)为增函数,f(x)为减函数,二、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);,如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);,函数的极大值与极小值统称 为极值.,使函数取得极值的点x0称为极值点,观察下列图形,你能找出函数的极值吗?,观察图象
2、,我们发现,是函数y=f(x)的极小值,是函数y=f(x)的 极大值。,求解函数极值的一般步骤:(1)确定函数的定义域(2)求函数的导数f(x)(3)求方程f(x)=0的根(4)用方程f(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f(x)在方程f(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况,左正右负极大值,左负右正极小值,在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题,函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?,新 课 引 入,极
3、值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,知识回顾,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,1最大值:,(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M,那么,称M是函数y=f(x)的最大值,2最小值:,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M,那么,称M是函数y=f(x)的最小值,观察下列图形,你能找出函数的最值吗?,在开区间内的连续函数不一定有最大值与最小值.,在闭区
4、间上的连续函数必有最大值与最小值,如何求出函数在a,b上的最值?,一般的如果在区间,a,b上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。,观察右边一个定义在区间a,b上的函数y=f(x)的图象:,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的 一个最小值.,求f(x)在闭区间a,b上的最值的步骤:,(1)求f(x)在区间(a,b)内极值(极大值或极小值);,新授课,求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 最大 导数 IV
链接地址:https://www.31ppt.com/p-6407600.html