几何中的线段和最小值问题.ppt
《几何中的线段和最小值问题.ppt》由会员分享,可在线阅读,更多相关《几何中的线段和最小值问题.ppt(11页珍藏版)》请在三一办公上搜索。
1、几何中的线段和的最小值问题,问题情境,1.如图,牧马人从A地出发到一条笔直的河边l处的P点饮马,P点在河边的什么位置可使牧马人所走路径最短?,理论依据:垂线段最短,P,A,B,小河,A,P,P,2.如图,牧马人从A地出发到一条笔直的河边l处的P点饮马,然后回到B地,P点在河边的什么位置,可使牧马人所走路径最短?,问题情境,理论依据:两点之间,线段最短,A1,草地,河流,A2,A,P,Q,3.如图,牧马人从A地出发,先到草地MN边的P处牧马,再到河l处的Q点饮马,然后回到B地.牧马人怎么走可使所走路径最短?,问题情境,理论依据:两点之间,线段最短,A1,草地,河流,A2,A,M,N,A,B,小河
2、,A,P,1.利用轴对称画出取最小值时点的位置,建立相关模型;2.把线段之和转化在同一条直线上,基本模型,【解题思路、方法】,(一),(二),1.画图建模2.化归转化,【解题策略】,如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,求PE+PF 的最小值.,F/,P,【题型特征】利用轴对称求最短路线问题,探 究,变式 1,如图,在周长为12的菱形ABCD中,B=60,点E,F分别为AB,AD上的两个动点,若P为对角线BD上一定点,求PE+PF 的最小值.,变式 2,如图,在周长为12的菱形ABCD中,A=120,点E,F,P分别为AB,AD,BD上的任意一点,求
3、PE+PF 的最小值.,【解题策略】1.变化中寻找不变性;2.化动为静,化归转化.,灵活应用1,如图,正方形ABCD周长为12,AE平分BAC交BC于E,点P和点Q同时从A出发分别沿AE、AB方向运动,已知点Q的速度为每秒1个单位,几秒后PB+PQ值最小?,【解题策略】1.变化中寻找不变性;2.化动为静,化归转化.,P,B,Q,灵活应用2,如图,在正方形ABCD中,E是对角线AC上的定点,点A到BE的距离为3,点P、Q和R各自在BE、AB、AE上运动且不与端点重合,求PQR周长的最小值是多少.,【解题策略】1.变化中寻找不变性;2.化动为静,化归转化.,Q,P2,P1,R,A1,草地,河流,A2,A,M,N,A,B,小河,A,P,1.利用轴对称画出取最小值时点的位置,建立相关模型;2.把线段之和转化在同一条直线上,基本模型,【解题思路、方法】,(一),(二),1.画图建模2.化归转化,【解题策略】,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 中的 线段 最小值 问题
链接地址:https://www.31ppt.com/p-6407132.html