光学谐振腔理论.ppt
《光学谐振腔理论.ppt》由会员分享,可在线阅读,更多相关《光学谐振腔理论.ppt(133页珍藏版)》请在三一办公上搜索。
1、第二章 光学谐振腔理论,2.1 激光振荡条件 了解光波模式的基本概念,掌握激光振荡的增益条件和光学正反馈条件。2.2 开放光学球面谐振腔的稳定性掌握稳定性判别原理和方法。2.3 光学谐振腔的损耗掌握光学谐振腔几种损耗术语与概念。2.4 开放谐振腔模式衍射理论了解衍射积分理论,掌握基模参数的计算公式,熟悉高阶模的特点。2.5 一般球面稳定腔模式2.6 非稳腔掌握共轭像点的计算方法,了解损耗的计算方法。,本章大纲,激光产生的三个前提条件(激光器的基本结构),激光工作物质:其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构,能够实现粒子数反转,产生受激光放大激励源:能将低能级的粒子不断抽运
2、到高能级,补充受激辐射减少的高能级上粒子数,使激光上下能级之间产生集居数反转光学谐振腔:使受激辐射的光能够在谐振腔内维持振荡,提高光能密度,光学谐振腔的结构:在增益介质的两端各加一块反射镜M1、M2。其中一块为全反射镜;另一块为部分反射镜(反射率接近于1)。放大的条件:光在腔内往返一次时放大的量大于损耗的量光学谐振腔的作用:延长增益介质作用长度;控制光束传播方向;选频(激光技术部分会讲),2.1 光学谐振腔概论,1)光波模式光学谐振腔内可能存在的电磁波的本征态称为腔的模式腔的模式也就是腔内可区分的光子的状态。同一模式内的光子,具有完全相同的状态(如频率、偏振等)。腔内电磁场的本征态(模式)由麦
3、克斯韦方程组及腔的边界条件决定。一旦给定了腔的具体结构,则其中振荡模的特征也就随之确定下来腔与模的一般联系。,麦克斯韦方程的本征解的电场分量,2.1 光学谐振腔概论,一个模式在波矢空间中占有体积,模式密度,z方向开放两维矩形谐振腔,y方向或x方向限制去掉,一维谐振腔,F-P结构,模式密度将变为一个常数光学谐振腔,相邻两个模式波矢之间的间距,2.1 光学谐振腔概论,开腔中的振荡模式以TEMmnq表征。TEM表示纵向电场为零的横电磁波,m、n、q为正整数,其中q为纵模指数,m、n为横模指数。模的纵向电磁场分布由纵模指数表征,横向电磁场分布与横模指数有关。m与n为零的模称作基模,m=1或n=1的模称
4、作高阶模。一个完整的模式不但有确定的横向分布,而且沿纵向形成驻波(驻波型谐振腔)。横模与纵模体现了电磁场模式的两个方面。,2.1 光学谐振腔概论,L一定的谐振腔只对一定频率的光波才能提供正反馈,使之谐振;F-P腔的谐振频率是分立的,谐振腔内只能存在满足以下条件的光场:经腔内往返一周再回到原来位置时,与初始出发波同相(即相差是2的整数倍相长干涉,2.1 光学谐振腔概论,腔光学长度为半波长的整数倍(驻波条件),2.1 光学谐振腔概论,2.1 光学谐振腔概论,达到谐振时,腔的光学长度应为半波长的整数倍。满足此条件的平面驻波场称为平行平面腔的本征模式腔内光强沿z轴的分布不是均匀的,而是强弱相间地分布着
5、。光强最强的明亮区,称为波腹;最弱的黑暗区,称为波节。将由整数q所表征的腔内纵向光场的分布称为腔的纵模,不同的q相应于不同的纵模,或相应于驻波场波腹的个数。纵模间隔与q无关,腔的纵模在频率尺度上是等间隔排列的,激活介质的增益系数G:光波在介质中经过单位长度路程光强的相对增长率,也代表介质对光波放大能力的大小考虑损耗:,2)增益系数与激光振荡的条件,2.1 光学谐振腔概论,2.1 光学谐振腔概论,r 振幅反射率,t振幅透射率,出射的光场E1En振幅叠加:,2.1 光学谐振腔概论,2.1 光学谐振腔概论,不需要初始从腔外输入微弱场以触发自激振荡。腔内初始一个光子的微弱自发辐射即可以使激光器振荡。,
6、2.1 光学谐振腔概论,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,1)光线变换矩阵腔内任一傍轴光线在某一给定的横截面内都可以由矩阵来表征:r为光线离轴线的距离、为光线与轴线的夹角。规定:光线出射方向在腔轴线的上方时,为正;反之,为负。当凹面镜向着腔内时,R取正值;当凸面镜向着腔内时,R取负值。,用一个二阶方阵描述入射光线和出射光线的坐标变换。该矩阵称为光学系统对光线的变换矩阵T。,2.2 开放光学球面谐振腔的稳定性,近轴光线在自由空间的传播,2.2 开放光学球面谐振腔的稳定性,近轴光线在球面镜上反射的变换矩阵,2.2 开放光学球面谐振腔的稳定性,近轴光线通过焦距为
7、f的薄透镜的变换矩阵,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,习题:,2)光线在谐振腔中往返一周变换矩阵,由曲率半径为R1和R2的两个球面镜M1和M2组成的共轴球面腔,腔长为L,开始时光线从M1面上出发(以M1为参考)向M2方向行进。,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,傍轴光线在腔内完成一次往返,总的坐标变换为,傍轴光线在腔内完成一次往返总的变换矩阵为,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,光线在腔内往返传输n次时,2.2 开放光学球面谐振腔的稳定性,3)
8、共轴球面腔的稳定性条件,傍轴光线能在腔内往返任意多次而不横向逸出腔外,要求n次往返变换矩阵Tn的各个元素An、Bn、Cn、Dn对任意n值均保持有限谐振腔的稳定条件,2.2 开放光学球面谐振腔的稳定性,如果光线在腔内的初始出发位置及往返一次的行进次序的不同,矩阵T各元素的具体表达式也将各不相同。可以证明,(A+D)/2对于一定几何结构的球面腔是一个不变量,与光线的初始坐标、出发位置及往返一次的顺序都无关。共轴球面腔的往返矩阵以及n次往返矩阵均与光线的初始坐标无关,可以描述任意傍轴光线在腔内往返传播的行为。,2.2 开放光学球面谐振腔的稳定性,共轴球面腔的分类:稳定腔 在腔内往返n次后,仍然会回到
9、原来的状态,谐振腔具有能够自再现的光线状态,旁轴光线在腔内往返无限多次而不会横向逸处腔外 非稳腔临界腔,2.2 开放光学球面谐振腔的稳定性,2.2 开放光学球面谐振腔的稳定性,双凹稳定腔,常见的几种稳定腔、非稳腔、临界腔:,稳定腔:,平-凹稳定腔,半共焦腔(L=R/2),凹-凸稳定腔,2.2 开放光学球面谐振腔的稳定性,稳定腔:,对称共焦腔R1=R2=L,平行平面腔R1=R2=,临界腔:,2.2 开放光学球面谐振腔的稳定性,对称共心腔R1=R2=L/2,虚共心腔 R1+R2=L,R1、R2异号,实共心腔 R1+R2=L,R1、R2均为正值,2.2 开放光学球面谐振腔的稳定性,临界腔:,双凹非稳
10、腔,2.2 开放光学球面谐振腔的稳定性,非稳腔:,平凹非稳腔,凹凸非稳腔,双凸非稳腔,2.2 开放光学球面谐振腔的稳定性,非稳腔:,稳区图:,2.2 开放光学球面谐振腔的稳定性,任意一个具有确定(R1、R2、L)值的球面腔唯一地对应于图中一个点,但反过来,图中每个点并不单值地代表某一具体尺寸的球面腔。对称共焦腔(本属于临界腔g1=0,g2=0),其中任意傍轴光线均可在腔内往返多次而不横向逸出,而且经两次往返即自行闭合。在这种意义上,共焦腔属于稳定腔之列。,共轴球面腔的稳定性条件改写为:,2.2 开放光学球面谐振腔的稳定性,可以证明,(A+D)/2对于一定几何结构的球面腔是一个不变量,与光线的初
11、始坐标、出发位置(如在腔面上或在腔内任何其他点)及往返一次的顺序无关。,对于复杂开腔,稳定性条件为:,对简单共轴球面腔,稳定性条件为:,2.2 开放光学球面谐振腔的稳定性,一般中小功率的气体激光器常用稳定腔,它的优点是容易产生激光;非稳定腔不宜用于中小功率的激光器,但对于增益系数大的固体激光器常用非稳定腔产生激光,光的准直性均匀性较好,它的优点是可以连续改变输出光的功率对称共焦腔是建立模式理论的基础,是一种最重要的稳定腔,2.2 开放光学球面谐振腔的稳定性,4)多元件谐振腔的稳定性判别,腔内有介质棒,2.2 开放光学球面谐振腔的稳定性,平凹腔内插入薄透镜,2.2 开放光学球面谐振腔的稳定性,光
12、线从透镜入射,经过距离l1的均匀空间,受平面镜反射,再经过距离l1的均匀空间,最后从透镜出射后变换矩阵为TF,l1,考点:谐振腔稳定性的判断对复杂腔,给出稳定性条件,损耗类型:输出损耗衍射损耗几何偏折损耗吸收、散射损耗 插入损耗,2.3 光学谐振腔的损耗,2.3 光学谐振腔的损耗,输出损耗:镜面上透射出去作为激光器的有用输出部分衍射损耗:腔镜具有有限大小的孔径,光波在镜面上发生衍射时形成的损耗与腔的菲涅尔数()有关,N愈大,损耗愈小(a:腔镜半径)与腔的几何参数有关与横模阶次有关,几何偏折损耗:光线在腔内往返传播时,从腔的侧面偏折逸出的损耗。取决于腔的类型和几何尺寸几何损耗的高低依模式不同而异
13、,高阶横模损耗大于低阶横模损耗是非稳腔的主要损耗几何偏折损耗和衍射损耗称为选择损耗,不同模式的几何偏折损耗和衍射损耗各不相同,2.3 光学谐振腔的损耗,插入损耗:插入玻片、电光调制器、声光调制器等器件引入的损耗,吸收、散射损耗:由于工作物质成分不均匀、粒子数密度不均匀或有缺陷(如固体激光器)而使光产生折射、散射,使部分光波偏离原来的传播方向,以及其它对光能的吸收,造成光能量损耗。内部损耗与增益介质长度有关。镜面的散射、吸收、由于光的衍射使光束扩散到反射镜面以外造成的损耗以及由镜面上透射出去作为激光器的有用输出。,2.3 光学谐振腔的损耗,1)平均单程损耗因子,如果初始光强为I0,在无源腔内往返
14、一周后光强衰减到I1,平均单程损耗因子:单程渡越时光强的平均衰减百分数;R:功率反射系数;a:腔内其他损耗,2.3 光学谐振腔的损耗,R称为腔的时间常数,光子数减小为t=0时刻的1/e由于腔内存在损耗,光场振幅随时间指数衰减,2)光子在腔内的平均寿命R,t=0时光强I0为初始光强,在腔内往返m次后(t 时刻)光强为Im,2.3 光学谐振腔的损耗,设 t 时刻腔内光子数密度为N(t),N0表示t=0时刻光子数密度可证明:腔的时间常数 等于光子在腔内的平均寿命,2.3 光学谐振腔的损耗,腔的品质因数表示光腔的储能与损耗的特征。Q值大,表示光腔的储能好,损耗小,腔内光子寿命长。,3)无源谐振腔的品质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光学 谐振腔 理论
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-6406571.html